Microstructure and corrosion behaviour of Ni-Ag and Ni-Cu composite coating for industrial applications

2020 ◽  
Author(s):  
G. Senthilkumar ◽  
S. Bharadwaj ◽  
R. Akhil ◽  
Gobi Saravanan Kaliaraj ◽  
Nivin Joy ◽  
...  
Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1162
Author(s):  
Rajaram S. Sutar ◽  
Saravanan Nagappan ◽  
Appasaheb K. Bhosale ◽  
Kishor Kumar Sadasivuni ◽  
Kang-Hyun Park ◽  
...  

Superhydrophobic coatings have a huge impact in various applications due to their extreme water-repellent properties. The main novelty of the current research work lies in the development of cheap, stable, superhydrophobic and self-cleaning coatings with extreme water-repellency. In this work, a composite of hydrothermally synthesized alumina (Al2O3), polymethylhydrosiloxane (PMHS) and polystyrene (PS) was deposited on a glass surface by a dip-coating technique. The Al2O3 nanoparticles form a rough structure, and low-surface-energy PHMS enhances the water-repellent properties. The composite coating revealed a water contact angle (WCA) of 171 ± 2° and a sliding angle (SA) of 3°. In the chemical analysis, Al2p, Si2p, O1s, and C1s elements were detected in the XPS survey. The prepared coating showed a self-cleaning property through the rolling action of water drops. Such a type of coating could have various industrial applications in the future.


2021 ◽  
pp. 1-39
Author(s):  
Vaibhav Nemane ◽  
Satyajit Chatterjee

Abstract Electroless deposition process can develop composite coatings superior in mechanical and tribological characteristics. The deposited alloy matrix with the reinforcement of a hard ceramic phase can produce a stronger composite coating, favorable for industrial applications. Fabrication process of Ni-B-W-SiC electroless composite coating on steel substrate by reinforcing silicon carbide (SiC) in ternary Ni-B-W matrix is presented in this report. Characteristics of the developed composite coating are studied in reference to electroless ternary Ni-B-W alloy coating. These ternary alloy and composite coatings are also subjected to heat treatment (450oC, 1 hr) to observe the changes. All coated samples are characterized with FESEM, XRD, ICP-AES, and HRTEM analyses to draw conclusions in comparative studies concerning morphological features, compositions, and phase structures. Cross-sectional and Raman spectroscopic examinations are performed to authenticate the presence of SiC phases in alloy matrix. To get a further insight on the nature, various nanomechanical and tribological properties of these coatings are evaluated and subsequently co-related. Coatings developed with silicon carbide particles present in matrices show remarkable improvements in nano-hardness (H), reduced modulus (Er), yield strength, and fraction of plastic work done. Heat treatment imparts propitious effects on these mechanical properties due to the formation of harder nickel boride (Ni3B, and Ni2B) phases. Heat-treated Ni-B-W-SiC composite subjected to tribological and micro-scratch testing reveals a significant improvement in sliding wear and scratch resistance as compared to those in other coatings.


2016 ◽  
Vol 680 ◽  
pp. 252-256
Author(s):  
Qian Lin Wu ◽  
Wen Ge Li ◽  
Li Hua Dong ◽  
Yan Sheng Yin

A double-layer composite coating on Q235 steel substrate was prepared using a new developed in situ technology consisting of SHS reaction, laser cladding and metal dusting techniques. A double-layer composite coating consists of the TiO2–TiC ceramic outer layer and the TiC-CNTs cermet inner layer. An excellent bonding was observed among the outer layer, the inner layer and the steel substrate. Corrosion behavior of the coating was investigated and the commercial 304SS was used for comparison. The outer layer exhibited the highest corrosion resistance and 304SS the lowest corrosion resistance, whereas the inner coating exhibited the intermediate corrosion resistance. However, the severe pitting corrosion which was observed in 304SS did not exist for the coating.


2008 ◽  
Vol 50 (11) ◽  
pp. 3213-3220 ◽  
Author(s):  
S.M. Jiang ◽  
X. Peng ◽  
Z.B. Bao ◽  
S.C. Liu ◽  
Q.M. Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document