Nanomechanical, Tribological, and Scratch Properties of Electroless Ni-B-W Alloy and Ni-B-W-SiC Composite Coatings

2021 ◽  
pp. 1-39
Author(s):  
Vaibhav Nemane ◽  
Satyajit Chatterjee

Abstract Electroless deposition process can develop composite coatings superior in mechanical and tribological characteristics. The deposited alloy matrix with the reinforcement of a hard ceramic phase can produce a stronger composite coating, favorable for industrial applications. Fabrication process of Ni-B-W-SiC electroless composite coating on steel substrate by reinforcing silicon carbide (SiC) in ternary Ni-B-W matrix is presented in this report. Characteristics of the developed composite coating are studied in reference to electroless ternary Ni-B-W alloy coating. These ternary alloy and composite coatings are also subjected to heat treatment (450oC, 1 hr) to observe the changes. All coated samples are characterized with FESEM, XRD, ICP-AES, and HRTEM analyses to draw conclusions in comparative studies concerning morphological features, compositions, and phase structures. Cross-sectional and Raman spectroscopic examinations are performed to authenticate the presence of SiC phases in alloy matrix. To get a further insight on the nature, various nanomechanical and tribological properties of these coatings are evaluated and subsequently co-related. Coatings developed with silicon carbide particles present in matrices show remarkable improvements in nano-hardness (H), reduced modulus (Er), yield strength, and fraction of plastic work done. Heat treatment imparts propitious effects on these mechanical properties due to the formation of harder nickel boride (Ni3B, and Ni2B) phases. Heat-treated Ni-B-W-SiC composite subjected to tribological and micro-scratch testing reveals a significant improvement in sliding wear and scratch resistance as compared to those in other coatings.

Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 134
Author(s):  
Marcin Winnicki ◽  
Wojciech Łapa ◽  
Zbigniew Znamirowski

Field electron emission of cold-sprayed copper-silicon carbide composite coating on a steel substrate was investigated. Two types of copper powders morphologies, namely dendritic and spherical, were mixed with crushed silicon carbide ceramic, and used as a feedstock. The powder mixtures were sprayed on the substrates and formed coatings with the designed surface topography—(i) flat and (ii) wavy. The microstructure of the coatings as well as the ceramic contents were analyzed. Initial tests proved that field emission from the Cu-SiC composite coatings was possible and depended mostly on the copper powder morphology. It was found out that the additional SiC layer deposited onto the composite coating significantly increased the number of electron emitters and thus improved the intensity of field emission. The Fowler–Nordheim model was used to find the threshold electric field, Eth, and coefficient of electric field amplification, β. These important properties of Cu/SiC + SiC coatings were found to be in the range of Eth = 20 to 24 V/µm and β = 340 to 410, respectively.


2014 ◽  
Vol 592-594 ◽  
pp. 1300-1304 ◽  
Author(s):  
Prasanna Gadhari ◽  
Prasanta Sahoo

The present study investigates the effect of different coating parameters along with heat treatment on the tribological properties of Ni–P–Al2O3 composite coating, deposited on mild steel substrate. The coefficient of friction and wear depth (μm) are optimized for increasing performance of the composite coating using Grey Taguchi analysis by considering three parameters, namely, concentration of nickel source, concentration of reducing agent, and concentration of alumina particles. Tribological properties of the composite coating after heat treatment at 400°C are evaluated by using plate-on-roller type of tribotester. It is observed that concentration of reducing agent and alumina particles have the significant influence on corrosion resistance at 400°C. Effects of operating parameters on microstructure, and crystallization are investigated using SEM and EDX techniques.


2019 ◽  
Vol 969 ◽  
pp. 73-79
Author(s):  
Bijoy Ramakrishnan ◽  
K. Uday Venkat Kiran ◽  
Pranit Rangari ◽  
Anuj Prajapati ◽  
Zuveria Firdouz ◽  
...  

The tribological characteristics of Electroless Ni-P and Ni-P/D (diamond) coatings were studied and analysed against AISI 52100 steel ball under dry reciprocating sliding conditions. Low and High Phosphorus Ni-P alloy coatings were deposited on steel substrate by Electroless deposition technique. Diamond particles were successfully reinforced into Ni-P matrix to produce Ni-P/D composite coatings. All coatings were subjected to heat treatment at 400°. The micro-hardness, surface features and elemental composition of the coatings was analysed. The surface morphology of Ni-P and Ni-P/D coatings is detailed. Presence of dia mond particles in Ni-P matrix was confirmed by EDS analysis. Dry sliding wear tests showed a significant enhancement in wear resistance of Ni-P/D composite coatings compared to Ni-P coatings. Experimental results indicate that combined effect of diamond particles reinforcement and heat treatment play a crucial role in modifying the surface characteristics and tribological performance of the Ni-P coatings.


2015 ◽  
Vol 228 ◽  
pp. 132-137 ◽  
Author(s):  
B. Łosiewicz ◽  
Grzegorz Dercz ◽  
Magdalena Popczyk

The Ni-Mo+MoO2composite coatings were obtained onto the steel substrate using anin situco-deposition of a Ni-Mo alloy and MoO2powder particles maintained in suspension in the potassium pyrophosphate bath. To characterize the physical and chemical properties of the obtained coatings, SEM, EDS, and XRD methods, were applied. It was found that the co-deposited MoO2particles strongly influenced the properties of the Ni-Mo alloy coating. In comparison with the comparable Ni-Mo deposit containing 45 at.% of Mo, the presence of MoO2embedded into the composite coating diminished the content of Mo alloyed with Ni to 23 at.%. The electrodeposited Ni-Mo+MoO2composite coating obtained under proposed electrochemical conditions contained 25 at.% of MoO2. The effect of the embedded MoO2as composite component on changes of the surface morphology and structure of the Ni-Mo binary alloy, was also discussed.


2012 ◽  
Vol 472-475 ◽  
pp. 70-73
Author(s):  
Ya Xu Jin ◽  
Yu Ming Tian ◽  
Qiu Shu Li

Electroless nickel plating with potassium titanate whisker was co-deposited on medium carbon steel substrates. The microstructure of the composite coatings was investigated. The effect of aging temperature on the microstructure of the composite coatings was studied using X-ray diffraction. The results indicate that the composite coatings will turn into crystal state with increasing heat treatment temperature. Experimental results also show that a maximum hardness is achieved for the composite coating after heat treatment at 400°C for 1 hour. The corrosion resistance and tribological properties of the composite coatings are not inferior to those of electroless Ni-P coating.


2011 ◽  
Vol 687 ◽  
pp. 641-646 ◽  
Author(s):  
Xue Song Li ◽  
Yue Yang ◽  
You Yang ◽  
Hua Wu

Eelectrodeposited black Cr-C nano-composite coating was prepared on the steel substrate and the effects of current density on the properties of the composite coating were studied in the present paper. The surface morphology and phase composition of the composite coatings were analyzed by means of scanning electronic microscopy (SEM) and X-ray diffractometer (XRD). Microhardness was determined by micrometer and the wear resistance of the coatings was evaluated by CETR using a universal materials tester (UMT). The results showed that formed under the condition of current density of 100A/dm2, temperature of 15°C, and the optimum particle content in electrolyte was 10g/l. The maximum microhardness of black Cr-C nano-composite coating was 10.8 Gpa, simutaneously, the wearing resistance of the coating improved significantly compared to the steel substrate.


2009 ◽  
Vol 23 (06n07) ◽  
pp. 1438-1443 ◽  
Author(s):  
ZHENTING WANG ◽  
LILI CHEN ◽  
XIANYOU ZHANG

A metal matrix composite coating reinforced by ZrC - ZrB 2 particulates has been successfully fabricated utilizing the in situ reaction of Zr , B 4 C and Fe pre-placed mixed powders by gas tungsten arc welding (GTAW) cladding process. Various volume fraction of ZrC - ZrB 2 particulates composite coatings were produced through cladding different weight ratios of Zr + B 4 C (30%, 50%, 70%) to improve the wear resistance of AISI1020 steel substrate. The Microstructure of the coating was analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive spectrum (EDS), meantime microhardness and wear resistance at room temperature of the composite coating were examined by means of Microhardness Tester and Wear Tester, respectively. The results show that the main phases of the composite coating obtained by GTAW are ZrC , ZrB 2 and α- Fe , ZrC exhibits hexahedron and petal shapes, ZrC - ZrB 2 compound presents acicular and clubbed forms. With the increase of content of Zr + B 4 C , the maximum volume fraction of ZrC - ZrB 2 particulates can reach 16.5%, microhardness is up to 1300HV, and wear resistance is about twenty times higher than that of AISI1020 steel substrate.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Zhisheng Li ◽  
Zongde Liu ◽  
Yongtian Wang ◽  
Shunv Liu ◽  
Runsen Jiang ◽  
...  

Fe-based amorphous composite coating was deposited on the carbon steel substrate by arc spraying and then remelted by a plasma remelting system, in order to improve the mechanical properties of the coatings. The composition, microstructure, and properties of the composite coating were analyzed by means of the metallographic microscope, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and microhardness tester. The results showed that the amorphous composite coatings had more homogeneous and finer microstructure after the plasma remelting. The coating is metallurgically bonded with the substrate, and the hardness of the Fe-based amorphous composite coating is up to 1220 HV. The internal relationship between microhardness and microstructure has been discussed.


2013 ◽  
Vol 838-841 ◽  
pp. 148-151
Author(s):  
Bo Lin Yu

In this paper, an elevator safety gear wedge with surface metal-ceramic composite coatings is proposed. After composite coating, the friction performance of the elevator safety gear wedge is very stable at high temperature, because of high hardness and high temperature oxidation resistance of coating material. And the friction coefficient becomes small by coating ceramic. In this research, six samples with different coating are prepared. These samples are installed in elevator safety system, and related speed parameters and stopping distance of elevator are tested. A conclusion can be drawn that sample 4 with 45# steel substrate and NiCrBSi-60 coating has a suitable friction coefficient, and the deceleration of elevator is controlled in the range of 0.2 to 1.0g when sample is installed in safety gear system.


Alloy Digest ◽  
1997 ◽  
Vol 46 (10) ◽  

Abstract Lanxide 91-X-1060-30P is a metal-matrix composite (MMC) consisting of an aluminum-silicon magnesium alloy matrix and 30 vol.% of silicon carbide. The MMC is designed to outperform its unreinforced counterpart. It is available as sand castings with a T6 heat treatment. This datasheet provides information on composition, physical properties, elasticity, tensile properties, and shear strength as well as fracture toughness and fatigue. It also includes information on forming. Filing Code: AL-342. Producer or source: Lanxide Corporation.


Sign in / Sign up

Export Citation Format

Share Document