Temperature characteristic of carrier scattering and dark resistivity of semi-insulating GaAs

2021 ◽  
Vol 130 (19) ◽  
pp. 195107
Author(s):  
Liqiang Tian ◽  
Guangcheng Sun ◽  
Dong Jing ◽  
Cong Pan ◽  
Zeen Ran ◽  
...  

2014 ◽  
Vol 59 (7) ◽  
pp. 706-711 ◽  
Author(s):  
D.M. Freik ◽  
◽  
S.I. Mudryi ◽  
I.V. Gorichok ◽  
R.O Dzumedze ◽  
...  


2012 ◽  
Vol 132 (2) ◽  
pp. 142-147
Author(s):  
Yutaka Takenaka ◽  
Muneaki Kurimoto ◽  
Yoshinobu Murakami ◽  
Masayuki Nagao


2020 ◽  
Vol 41 (9) ◽  
pp. 1158-1164
Author(s):  
Bo LI ◽  
◽  
Zhen-fu WANG ◽  
Bo-cang QIU ◽  
Guo-wen YANG ◽  
...  




Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3150
Author(s):  
Ignas Nevinskas ◽  
Zenius Mockus ◽  
Remigijus Juškėnas ◽  
Ričardas Norkus ◽  
Algirdas Selskis ◽  
...  

Electron dynamics in the polycrystalline bismuth films were investigated by measuring emitted terahertz (THz) radiation pulses after their photoexcitation by tunable wavelength femtosecond duration optical pulses. Bi films were grown on metallic Au, Pt, and Ag substrates by the electrodeposition method with the Triton X-100 electrolyte additive, which allowed us to obtain more uniform films with consistent grain sizes on any substrate. It was shown that THz pulses are generated due to the spatial separation of photoexcited electrons and holes diffusing from the illuminated surface at different rates. The THz photoconductivity spectra analysis has led to a conclusion that the thermalization of more mobile carriers (electrons) is dominated by the carrier–carrier scattering rather than by their interaction with the lattice.



2021 ◽  
Vol 16 (2) ◽  
Author(s):  
Caitlin M. Crawford ◽  
Erik A. Bensen ◽  
Haley A. Vinton ◽  
Eric S. Toberer


2021 ◽  
Vol 89 (3) ◽  
pp. 30
Author(s):  
Anna Ploch-Jankowska ◽  
Danuta Pentak ◽  
Jacek E. Nycz

Human serum albumin (HSA) is the most abundant human plasma protein. HSA plays a crucial role in many binding endos- and exogenous substances, which affects their pharmacological effect. The innovative aspect of the study is not only the interaction of fatted (HSA) and defatted (dHSA) human serum albumin with ibuprofen (IBU), but the analysis of the influence of temperature on the structural modifications of albumin and the interaction between the drug and proteins from the temperature characteristic of near hypothermia (308 K) to the temperature reflecting inflammation in the body (312 K and 314 K). Ibuprofen is a non-steroidal anti-inflammatory drug. IBU is used to relieve acute pain, inflammation, and fever. To determine ibuprofen’s binding site in the tertiary structure of HSA and dHSA, fluorescence spectroscopy was used. On its basis, the fluorescent emissive spectra of albumin (5 × 10−6 mol/dm3) without and with the presence of ibuprofen (1 × 10−5–1 × 10−4 mol/dm3) was recorded. The IBU-HSA complex’s fluorescence was excited by radiation of wavelengths of λex 275 nm and λex 295 nm. Spectrophotometric spectroscopy allowed for recording the absorbance spectra (zero-order and second derivative absorption spectra) of HSA and dHSA under the influence of ibuprofen (1 × 10−4 mol/dm3). To characterize the changes of albumin structure the presence of IBU, circular dichroism was used. The data obtained show that the presence of fatty acids and human serum albumin temperature influences the strength and type of interaction between serum albumin and drug. Ibuprofen binds more strongly to defatted human serum albumin than to albumin in the presence of fatty acids. Additionally, stronger complexes are formed with increasing temperatures. The competitive binding of ibuprofen and fatty acids to albumin may influence the concentration of free drug fraction and thus its therapeutic effect.





1928 ◽  
Vol 11 (5) ◽  
pp. 547-562 ◽  
Author(s):  
Ernst Wolf

The frequency of contraction of the bell of Gonionemus was studied in relation to temperature, with intact animals and also where different operations were made on the nervous system. A number of values of µ are found for intact animals namely 8,100±, 10,500±, 32,000± and 22,500±, with critical temperatures at 9.6°, 12.3°, and 14.0°. Four different classes of operations were used: (1) Animals where the nerve ring was cut on two opposite sides of the bell; the µ values found are 10,500± and 21,300±, with a critical temperature at 13.4°. (2) Animals with four cuts through the nerve ring gave µ = 10,600 ± and µ = 21,000, with a critical temperature at 13.1°. (3) In animals where the bell was cut in half the temperature characteristic was found to be 16,900. And finally (4) in the animals where the nerve ring was totally removed µ values of 8,100, 16,000±, and 29,000 were found, with critical temperatures at 15.0° and 9.4°. These results are discussed from the standpoint of the theory which supposes that definite "temperature characteristics" may be associated with the functional activity of particular elements in a complex functional unit, and that these elements may be separately studied and identified by suitable experimental procedures involving the magnitudes of the respective temperature characteristics and the locations of associated critical temperatures. The swimming bell of medusæ with its marginal sense organs permits a fairly direct approach to such questions. It is found that even slight injuries to the marginal nerve ring, for example, produce specific modifications in the temperature relations which are different from those appearing when the organism is cut in half.



1928 ◽  
Vol 11 (6) ◽  
pp. 715-741 ◽  
Author(s):  
Hudson Hoagland

1. The durations of successive periods of induced tonic immobility in the lizard Anolis carolinensis was examined as a function of temperature. An automatic recording method was employed and observations were made of 12,000 to 15,000 immobilizations with six animals over a temperature range of 5° to 35°C. during 5 months. 2. The durations of the immobile periods were found to vary rhythmically in most cases. The reciprocal of the duration of the rhythm, i.e., the rate of change of the process underlying the rhythms, when plotted as a function of temperature according to the Arrhenius equation show distributions of points in two straight line groups. One of these groups or bands of points extends throughout the entire temperature range with a temperature characteristic of approximately µ = 31,000 calories, and the other covers the range of 20° to 35°C. with µ equal to approximately 9,000 calories. 3. The initial stimulus in a series of inductions of immobility appears to set off a mechanism which determines the duration of the state of quiescence. Succeeding forced recoveries seem to have no effect on the normal duration of the rhythm. 4. These results are interpreted by assuming the release, through reflex stimulation, of hormonal substances, one effective between 5° and 35°C. and the other effective between 20° and 35°C. These substances are assumed to act as selective inhibitors of impulses from so called "higher centers," allowing impulses from tonic centers to pass to the muscles. 5. In some experiments a progressive lengthening in successively induced periods of immobility was observed. The logarithm of the frequency of recovery when plotted against time in most of these cases (i.e., except for a few in which irregularities occurred) gave a linear function of negative slope which was substantially unaffected by temperature. In these cases it is assumed that a diffusion process is controlling the amount of available A substance. 6. The results are similar to those obtained by Crozier with Cylisticus convexus. The duration of tonic immobility seems to be maintained in both arthropod and vertebrate by the chemical activity of "hormonal" selective inhibitors. The details of the mechanisms differ, but there is basic similarity. 7. Injections of small amounts of adrenalin above a threshold value are found to prolong the durations of tonic immobility of Anolis, by an amount which is a logarithmic function of the "dose." It is possible that internally secreted adrenalin, above a threshold amount, may be involved in the maintenance of tonic immobility. 8. The production of tonic immobility reflexly is a problem distinct from that of the duration of immobility. It is suggested that the onset may be induced by "shock" to the centers of reflex tonus causing promiscuous discharge of these centers with accompanying inhibition of the higher centers. Such a condition may result when an animal is suddenly lifted from the substratum and overturned, or when, as in the case of Anolis, it struggles with dorsum down. This reaction of the "tonic centers" may at the same time lead to discharge of the adrenal glands by way of their spinal connections thus prolonging the state.



Sign in / Sign up

Export Citation Format

Share Document