Effects of Phosphor Persistence on Perception and the Control of Eye Movements

Perception ◽  
1989 ◽  
Vol 18 (2) ◽  
pp. 257-264 ◽  
Author(s):  
Catherine Neary ◽  
Arnold J Wilkins

When a rapid eye movement (saccade) is made across material displayed on cathode ray tube monitors with short-persistence phosphors, various perceptual phenomena occur. The phenomena do not occur when the monitor has a long-persistence phosphor. These phenomena were observed for certain spatial arrays, their possible physiological basis noted, and their effect on the control of eye movements examined. When the display consisted simply of two dots, and a saccade was made from one to the other, a transient ghost image was seen just beyond the destination target. When the display consisted of vertical lines, tilting and displacement of the lines occurred. The phenomena were more intrusive for the latter display and there was a significant increase in the number of corrective saccades. These results are interpreted in terms of the effects of fluctuating illumination (and hence phosphor persistence) on saccadic suppression.

1974 ◽  
Vol 124 (583) ◽  
pp. 547-553 ◽  
Author(s):  
Hugh Firth

Almost all sleep-promoting drugs distort the natural pattern of sleep by suppressing rapid eye movement (REM) sleep, and cause a rebound to above-normal values on withdrawal which typically lasts about six weeks (Oswald, 1968, 1969). Furthermore, barbiturates reduce the number of eye movements per unit time in REM sleep (Oswald et al., 1963; Baekeland, 1967; Lester et al., 1968; Feinberg et al., 1969), with a rebound in eye movement (EM) profusion on withdrawal (Oswald, 1970). Non-barbiturate hypnotics do likewise, also with a rebound in EM profusion on withdrawal (Allen et al., 1968; Lewis, 1968).


1999 ◽  
Vol 81 (5) ◽  
pp. 2538-2557 ◽  
Author(s):  
Chiju Chen-Huang ◽  
Robert A. McCrea

Effects of viewing distance on the responses of vestibular neurons to combined angular and linear vestibular stimulation. The firing behavior of 59 horizontal canal–related secondary vestibular neurons was studied in alert squirrel monkeys during the combined angular and linear vestibuloocular reflex (CVOR). The CVOR was evoked by positioning the animal’s head 20 cm in front of, or behind, the axis of rotation during whole body rotation (0.7, 1.9, and 4.0 Hz). The effect of viewing distance was studied by having the monkeys fixate small targets that were either near (10 cm) or far (1.3–1.7 m) from the eyes. Most units (50/59) were sensitive to eye movements and were monosynaptically activated after electrical stimulation of the vestibular nerve (51/56 tested). The responses of eye movement–related units were significantly affected by viewing distance. The viewing distance–related change in response gain of many eye-head-velocity and burst-position units was comparable with the change in eye movement gain. On the other hand, position-vestibular-pause units were approximately half as sensitive to changes in viewing distance as were eye movements. The sensitivity of units to the linear vestibuloocular reflex (LVOR) was estimated by subtraction of angular vestibuloocular reflex (AVOR)–related responses recorded with the head in the center of the axis of rotation from CVOR responses. During far target viewing, unit sensitivity to linear translation was small, but during near target viewing the firing rate of many units was strongly modulated. The LVOR responses and viewing distance–related LVOR responses of most units were nearly in phase with linear head velocity. The signals generated by secondary vestibular units during voluntary cancellation of the AVOR and CVOR were comparable. However, unit sensitivity to linear translation and angular rotation were not well correlated either during far or near target viewing. Unit LVOR responses were also not well correlated with their sensitivity to smooth pursuit eye movements or their sensitivity to viewing distance during the AVOR. On the other hand there was a significant correlation between static eye position sensitivity and sensitivity to viewing distance. We conclude that secondary horizontal canal–related vestibuloocular pathways are an important part of the premotor neural substrate that produces the LVOR. The otolith sensory signals that appear on these pathways have been spatially and temporally transformed to match the angular eye movement commands required to stabilize images at different distances. We suggest that this transformation may be performed by the circuits related to temporal integration of the LVOR.


2012 ◽  
Vol 25 (0) ◽  
pp. 171-172
Author(s):  
Fumio Mizuno ◽  
Tomoaki Hayasaka ◽  
Takami Yamaguchi

Humans have the capability to flexibly adapt to visual stimulation, such as spatial inversion in which a person wears glasses that display images upside down for long periods of time (Ewert, 1930; Snyder and Pronko, 1952; Stratton, 1887). To investigate feasibility of extension of vision and the flexible adaptation of the human visual system with binocular rivalry, we developed a system that provides a human user with the artificial oculomotor ability to control their eyes independently for arbitrary directions, and we named the system Virtual Chameleon having to do with Chameleons (Mizuno et al., 2010, 2011). The successful users of the system were able to actively control visual axes by manipulating 3D sensors held by their both hands, to watch independent fields of view presented to the left and right eyes, and to look around as chameleons do. Although it was thought that those independent fields of view provided to the user were formed by eye movements control corresponding to pursuit movements on human, the system did not have control systems to perform saccadic movements and compensatory movements as numerous animals including human do. Fluctuations in dominance and suppression with binocular rivalry are irregular, but it is possible to bias these fluctuations by boosting the strength of one rival image over the other (Blake and Logothetis, 2002). It was assumed that visual stimuli induced by various eye movements affect predominance. Therefore, in this research, we focused on influenced of patterns of eye movements on visual perception with binocular rivalry, and implemented functions to produce saccadic movements in Virtual Chameleon.


2020 ◽  
Vol 31 (4) ◽  
pp. 351-362
Author(s):  
Klinton Bicknell ◽  
Roger Levy ◽  
Keith Rayner

Reading is a highly complex learned skill in which humans move their eyes three to four times every second in response to visual and cognitive processing. The consensus view is that the details of these rapid eye-movement decisions—which part of a word to target with a saccade—are determined solely by low-level oculomotor heuristics. But maximally efficient saccade targeting would be sensitive to ongoing word identification, sending the eyes farther into a word the farther its identification has already progressed. Here, using a covert text-shifting paradigm, we showed just such a statistical relationship between saccade targeting in reading and trial-to-trial variability in cognitive processing. This result suggests that, rather than relying purely on heuristics, the human brain has learned to optimize eye movements in reading even at the fine-grained level of character-position targeting, reflecting efficiency-based sensitivity to ongoing cognitive processing.


1964 ◽  
Vol 19 (2) ◽  
pp. 447-451 ◽  
Author(s):  
Ascanio M. Rossi ◽  
Allan Furhman ◽  
Philip Solomon

Three Ss in sensory deprivation were continuously monitored by electroencephalographic (EEG) and electrooculographic (EOG) recordings. Retrospective reports of their mental states were given upon receipt of a signal. Ratings of report contents were compared with EEG determined levels of arousal and with the occurrence of rapid eye movements (REMs). Results indicate that the incidences of hallucinations and thought disorganization vary inversely with level of arousal, and hallucinations are not accompanied by REMs as occurs during dreaming.


Perception ◽  
1979 ◽  
Vol 8 (1) ◽  
pp. 21-30 ◽  
Author(s):  
Keith Rayner

Three broad categories of models of eye movement guidance in reading are described. According to one category, eye movements in reading are not under stimulus or cognitive control; the other two categories indicate that cognitive activities or stimulus characteristics are involved in eye guidance. In this study a number of descriptive analyses of eye movements in reading were carried out. These analyses dealt with fixation locations on letters within words of various lengths, conditional probabilities that a word will be fixated given that a prior word was or was not fixated, and average saccade length as a function of the length of the word to the right of the fixated word. The results of these analyses were supportive of models which suggest that determining where to look next while reading is made on a nonrandom basis.


2021 ◽  
Vol 4 (3) ◽  
pp. 95-112
Author(s):  
Mina Sano

Early childhood children tend to make musical expressions watching other children or the teacher’s piano accompaniment. However, it has not been inspected yet how eye movement is affected by music. To provide the optimized procedure to capture eye movement’s characteristics reflecting music, the statistical technique was used to evaluate effective parameters. In this study, eye trackers (Tobii Glasses 2) were used to acquire data of eye movements during musical expression of early childhood children and to conduct quantitative analysis. 3-year-old, 4-year-old, and 5- year-old children in two early childhood facilities (n=58) participated in eye-tracking while singing multiple songs of major and minor. This paper focuses on saccade (rapid eye movement) and gaze behaviors of early childhood children and mainly conducts, a three-way analysis of variance (ANOVA) on the acquired data (age * facility*tonality). As a result, it was found that the number of occurrences of saccade and the total moving distances of saccade showed a statistical significance between means regarding differences in the tonality of major/minor key of songs, and childcare forms.


1978 ◽  
Vol 47 (3) ◽  
pp. 767-776 ◽  
Author(s):  
John A. Allen ◽  
Stephen R. Schroeder ◽  
Patricia G. Ball

Two groups of 10 subjects tracked a segment of the Aetna training film, Traffic Strategy, six times by manipulating the controls of an Aetna Drivo-Trainer station. One group was composed of licensed drivers, the other, nonlicensed. No significant differences were found with respect to: (1) use of the accelerator, (2) frequency of eye movements, (3) length of eye movements, (4) fixation errors, (5) driving errors, or (6) the relationship of control actions to driving errors. Differences were noted with respect to: (1) steering and braking, (2) the effects of practice on control actions and driving errors, and (3) the relationship of amplitude of eye movement to control actions and driving errors. The results are discussed in terms of possible differences in search strategy between experienced and inexperienced drivers.


Sign in / Sign up

Export Citation Format

Share Document