Implications of LNG exposure on the competitiveness of Australia

2016 ◽  
Vol 56 (2) ◽  
pp. 589
Author(s):  
Ross Lambie ◽  
Nicole Thomas ◽  
David Whitelaw

Australia’s eastern gas market has historically been one of low prices and stable, long-term contracts. The development of coal seam gas (CSG) and the construction of Queensland’s three CSG to LNG projects is driving a tripling of gas production in eastern Australia and changes to historical patterns and directions of gas flows throughout the market. This transition from an isolated market to one linked to international LNG markets, coinciding with the unwinding of many legacy contracts, is leading to unprecedented change and will have profound effects on all participants. This extended abstract considers the implications of LNG exposure on the competitiveness of Australia’s eastern gas market. It will draw on the expertise of the gas market specialists in the Office of the Chief Economist, and the oligopolistic model of the market, to consider impacts on supply, demand, price, and the level of competition in various sectors of the market. One of the initial findings is that the volatility of global LNG spot prices is likely to have a significant impact on both gas production and demand in east Australia, given the scale of LNG exports relative to the eastern market. The extended abstract explores a range of LNG demand scenarios for the eastern gas market. It will emphasise the fundamental importance of expanded gas production on market outcomes, and the need for ongoing gas exploration and development to support the market through the transition.


2004 ◽  
Vol 44 (1) ◽  
pp. 647 ◽  
Author(s):  
J.M. Riley

The coal seam gas (CSG) industry has been active in Australia for almost three decades, with interest largely focussed on the Bowen and Sydney basins. Sporadic activity has also occurred in a number of other areas including the Galilee, Ipswich, Clarence–Moreton, Gunnedah, Gloucester, and Otway basins to name a few, with significant recent interest shown in the promising Surat Basin. Of these basins it is the Bowen Basin in eastern central Queensland which has continued to shine as the premier coal seam gas province in the country.From humble beginnings in the mid-1970s in the Moura area, CSG from the Bowen Basin now supplies around 20% of Queensland gas demand. Since the start of commercial production from the basin in 1996, production has grown to about 20 PJ per year from five separate fields, with three new fields under construction expected to more than double this volume over the next 2–3 years.The largest contribution to this growth will come from the Comet Ridge region which is proving itself to be a world class CSG deposit. The high-productivity fairway in the south of the region extends over an area about 80 km long and 20 km wide and includes the Tipperary Fairview field, and the Origin Energy Spring Gully project. In the last year proved and probable gas reserves have more than doubled to 1,500 PJ across the fairway, with upside recoverable gas estimated to be 4,700 PJ. The rapid rate of CSG reserves increase in the Bowen Basin demonstrates the key role this industry will play in the eastern Australia gas market.



2015 ◽  
Vol 55 (2) ◽  
pp. 444
Author(s):  
Abbas Khaksar ◽  
Morteza Jami ◽  
Ahmadreza Younessi

The exploiting of coal seam gas (CSG) reservoirs worldwide has developed rapidly. These reservoirs are located in different geological settings and have different characteristics. In eastern Australia for instance, Surat Basin CSG reservoirs are typically thin and interbedded with thick layers of sandstone, siltstones and shales, and occur at shallow depths, adjacent to fresh-water aquifers. For commercial gas production from wet- and low- permeability thin CSG reservoirs, both the hydrostatic pressure and the water saturation have to be reduced through a de-watering and pressure depletion process. These mechanisms increase the risk of rock failure and solids production before or from the onset of gas production in many CSG wells. In thinly bedded CSG reservoirs, solids production from coals may not be a concern, but sanding from interbed rocks—some with abundant water sensitive clay minerals—may be a significant source of solids production. Given the relatively low drilling and completion costs and short life span of the CSG wells, many of the conventional sand control measures such as screens or gravel packs may be of limited use or not applicable. In this extended abstract, examples of solids production issues and the potential sources of solids in typical Surat Basin CSG wells are shown, and options for solids control are discussed.



2009 ◽  
Vol 49 (1) ◽  
pp. 79 ◽  
Author(s):  
G. Baker ◽  
S. Slater

The commercial production of coal seam gas (CSG) in Australia commenced in 1996. Since then its production has grown up significantly, particularly in the last five years, to become an integral part of the upstream gas industry in eastern Australia. The major growth in both CSG reserves and production has been in the Bowen and Surat basins in Queensland. Active exploration and appraisal programs with the first pilot operations were established in the Galilee Basin in 2008; however, an important reserve base has been built up in New South Wales in the Clarence-Moreton, Gloucester, Gunnedah and Sydney basins. There has been modest CSG production from the Sydney Basin for some years with commercial production expected to commence in the other three basins by or during 2010. Exploration for CSG has been undertaken in Victoria and Tasmania while programs are being developed in South Australia focussing on the Arckaringa Basin. Elsewhere in Australia planning is being undertaken for CSG exploration programs for the Pedirka Basin in the Northern Territory and the Perth Basin in Western Australia. CSG was being supplied into the eastern Australian natural gas market at 31 December 2008 at a rate of approximately 458 TJ per day (167 PJ per year). Queensland is currently producing 96.7% of this total. Approximately 88% of the natural gas used in Queensland is CSG. Currently, CSG accounts for nearly 25% of the eastern Australian natural gas market, estimated at 670 PJ per year. The production of CSG is now a mature activity that has achieved commercial acceptability, especially for coal seam derived gas from the Bowen and Surat basins. The recent proposals by a number of local CSG producers—in joint venture arrangements with major international groups—to produce liquefied natural gas (LNG) from CSG along with a number of merger and acquisition proposals, is testimony to the growing economic and commercial significance of the CSG sector. Should all of the proposed CSG based LNG projects eventuate, LNG output would be approximately 40 million tones per year. This will require raw CSG production to increase to approximately 2,600 PJ per year, resulting in a four fold increase from the present natural gas consumption in eastern Australia. The proved and probable (2P) reserves of CSG in eastern Australia at 31 December 2008 were 17,011 PJ or 60.2% of the total independently audited 2P natural gas reserves of 28,252 PJ. The Bowen and Surat basins with 16,120 PJ have the largest onshore gas reserves eastern Australia. In New South Wales, the 2P CSG reserves at the end of 2008 were 892 PJ, though this is expected to increase significantly over the next 12 months. Major upstream natural gas producers such as Origin Energy Limited and Santos Limited both hold over 50% of their Australian 2P gas reserves as CSG. The 1P reserves of CSG in eastern Australia at 31 December were reported as 4,197 PJ while the 3P reserves of CSG at the same date were 40,480 PJ. Most companies in the CSG sector are undertaking development work to upgrade their 3P reserves (and contingent resources) into the 2P category. The CSG resource in eastern Australia is very large. Companies with interests in CSG have reported in excess of 200,000 PJ as gas in place in the Bowen, Clarence-Moreton, Galilee, Gloucester, Gunnedah, Queensland Coastal, Surat and Sydney basins. The 2P reserves of CSG are expected to exceed 20,000 PJ by the end of 2009. A significant part of the expected large increase in 2P reserves of gas initially will be dedicated to the proposed LNG projects being considered for Gladstone. The major issues confronting the CSG industry and its rapid growth are concerned with land access, overlapping tenure (particularly in Queensland with underground coal gasification) the management and beneficial use of co-product formation water and gas production ramp up factors associated with the proposed LNG projects.



2018 ◽  
Vol 195 ◽  
pp. 1-13 ◽  
Author(s):  
Yanhua Zhang ◽  
Jim Underschultz ◽  
Laurent Langhi ◽  
Dirk Mallants ◽  
Julian Strand


Author(s):  
Chawarwan Khan ◽  
Dan Kuznetsov ◽  
Thomas Rufford ◽  
Victor Rudolph ◽  
Zhongwei Chen


2010 ◽  
Vol 50 (2) ◽  
pp. 686
Author(s):  
Cristian Purtill

The Queensland Government has developed an associated water management policy that, among other things, strives to maximise the beneficial use of associated water derived from Queensland’s burgeoning coal seam gas industry. The Department of Infrastructure and Planning reports that domestic gas production alone (i.e. without an export LNG market) will produce on average 25 GL per annum in the next 25 years. Most of this water has sufficiently high total dissolved solids and other water quality issues to require some form of treatment prior to use. Clearly, the relatively large volumes of water present both challenges and opportunities to the communities in which the CSG industry is developing. In line with the philosophy of beneficial use of associated water, Santos has developed a portfolio of options within its associated water management strategy and plans for its Arcadia Valley, Fairview and Roma tenements. The strategy seeks to: provide enduring value for the community; maximise benefits while minimising the environmental footprint; provide a range of alternatives to avoid single-mode failure; use scalable options in response to uncertainty; deploy demonstrated technologies; and, meet and exceed all regulatory requirements. This paper will set some context around the broader CSG industry’s associated water challenges, and identify what parameters must be considered in arriving at beneficial uses for the water. The paper then explores some of Santos’ approaches to associated water management.



2017 ◽  
Vol 57 (2) ◽  
pp. 526
Author(s):  
Will Pulsford

The Australian Energy Market Operator (AEMO) issued a Gas Statement of Opportunities in March 2016, which reports that gas supply to the domestic and liquefied natural gas markets in eastern Australia will be largely satisfied by proved and probable reserves until 2026 and by the addition of contingent resources until 2030. However, in parallel, there are widely reported concerns by energy consumers of insufficient gas supplies to meet demand by the early 2020s and a lack of new gas supplies to replace existing expiring contracts. Gas shortages have already contributed to black outs and load shedding events in South Australia. This paper reviews the eastern Australian gas supply position at a basin level. The AEMO basin level supply forecasts are reviewed and adjusted to generate forward profiles, which are consistent with reported reserves levels, production histories and depletion behaviour of typical gas fields. The revised supply forecast is compared with the AEMO’s demand profiles, and the likely commercial behaviour of key participants in the market is considered to build a picture of the domestic gas supply-demand balance through the 2020s. This analysis provides a transparent link from market outcomes back to the underlying reserves classifications to guide interpretation of supply-demand forecasts, and highlights the critical role of key suppliers in the eastern Australian gas market in the coming decade.



2016 ◽  
Vol 56 (2) ◽  
pp. 545
Author(s):  
David Post ◽  
Peter Baker ◽  
Damian Barrett

Many Australians, particularly in rural areas, are seeking clear scientific information about the potential impacts of coal seam gas production on groundwater and surface water across the country. In response to the resultant community concern, the Australian Government commissioned an ambitious multi-disciplinary program of bioregional assessments to improve understanding of the potential impacts of coal seam gas (and large coal mining) activities on water-dependent assets across six bioregions in eastern and central Australia. Delivered through a collaboration between the Department of the Environment, the Bureau of Meteorology, CSIRO, and Geoscience Australia—and including close engagement with natural resource management and catchment management organisations, coal resource companies, Indigenous peoples and state governments—the results will allow coal resource companies, governments, and the community to focus on the areas where impacts may occur so that these can be minimised. Key findings of the program will be presented with specific reference to the potential impacts on water-dependent assets due to CSG development by Metgasco and AGL in the Clarence-Moreton and Gloucester regions, respectively.



Sign in / Sign up

Export Citation Format

Share Document