GEOLOGY, SOURCE ROCKS AND HYDROCARBON GENERATION IN THE CLARENCE-MORETON BASIN

1982 ◽  
Vol 22 (1) ◽  
pp. 5
Author(s):  
A. R. Martin ◽  
J. D. Saxby

The geology and exploration history of the Triassic-Cretaceous Clarence-Moreton Basin are reviewed. Consideration of new geochemical data ('Rock-Eval', vitrinite reflectance, gas chromatography of extracts, organic carbon and elemental analysis of coals and kerogens) gives further insights into the hydrocarbon potential of the basin. Although organic-rich rocks are relatively abundant, most source rocks that have achieved the levels of maturation necessary for hydrocarbon generation are gas-prone. The exinite-rich oil-prone Walloon Coal Measures are in most parts relatively immature. Some restraints on migration pathways are evident and igneous and tectonic events may have disturbed potentially well-sealed traps. Further exploration is warranted, even though the basin appears gas-prone and the overall prospects for hydrocarbons are only fair. The most promising areas seem to be west of Toowoomba for oil and the Clarence Syncline for gas.

Minerals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 595
Author(s):  
Temitope Love Baiyegunhi ◽  
Kuiwu Liu ◽  
Oswald Gwavava ◽  
Nicola Wagner ◽  
Christopher Baiyegunhi

The southern Bredasdorp Basin, off the south coast of South Africa, is only partly understood in terms of its hydrocarbon potential when compared to the central and northern parts of the basin. Hydrocarbon potential assessments in this part of the basin have been limited, perhaps because the few drilled exploration wells were unproductive for hydrocarbons, yielding trivial oil and gas. The partial integration of data in the southern Bredasdorp Basin provides another reason for the unsuccessful oil and gas exploration. In this study, selected Cretaceous mudrocks and sandstones (wacke) from exploration wells E-AH1, E-AJ1, E-BA1, E-BB1 and E-D3 drilled in the southern part of the Bredasdorp Basin were examined to assess their total organic carbon (TOC), thermal maturity, organic matter type and hydrocarbon generation potential. The organic geochemical results show that these rocks have TOC contents ranging from 0.14 to 7.03 wt.%. The hydrogen index (HI), oxygen index (OI), and hydrocarbon index (S2/S3) values vary between 24–263 mg HC/g TOC, 4–78 mg CO2/g TOC, and 0.01–18 mgHC/mgCO2 TOC, respectively, indicating predominantly Type III and IV kerogen with a minor amount of mixed Type II/III kerogen. The mean vitrinite reflectance values vary from 0.60–1.20%, indicating that the samples are in the oil-generation window. The Tmax and PI values are consistent with the mean vitrinite reflectance values, indicating that the Bredasdorp source rocks have entered the oil window and are considered as effective source rocks in the Bredasdorp Basin. The hydrocarbon genetic potential (SP), normalized oil content (NOC) and production index (PI) values all indicate poor to fair hydrocarbon generative potential. Based on the geochemical data, it can be inferred that most of the mudrocks and sandstones (wackes) in the southern part of the Bredasdorp Basin have attained sufficient burial depth and thermal maturity for oil and gas generation potential.


2001 ◽  
Vol 41 (1) ◽  
pp. 367 ◽  
Author(s):  
A.R. Kaiko ◽  
A.M. Tait

The subsidence history of the Northern Carnarvon Basin has been dominated by simple thermal sag following the creation of the Exmouth, Barrow and Dampier Sub-basins by Early to Middle Jurassic rifting. This conclusion follows from the recognition of vitrinite reflectance suppression, which removes the need for recent heating events, and from the use of seismic stratigraphy, rather than only palynology and micro-palaeontology, to determine palaeo-water depths.The simple thermal-sag model, related to Jurassic rifting, accounts for the post-rift sedimentary architecture of the Northern Carnarvon Basin, especially in areas of sediment starvation. It also has implications for the timing of hydrocarbon generation and the reconstruction of migration pathways. This work has re-emphasised the theoretical possibility of determining palaeo-water depths by adjusting one-dimensional basin models to fit simple thermal sag tectonic subsidence curves.Miocene uplift, in the order of several hundred metres, has caused local basin inversion, accentuated some preexisting structures and re-activated some faults causing hydrocarbon remigration, but has otherwise not affected the thermal history of the sediments.


1994 ◽  
Vol 34 (1) ◽  
pp. 692 ◽  
Author(s):  
Roger E. Summons ◽  
Dennis Taylor ◽  
Christopher J. Boreham

Maturation parameters based on aromatic hydrocarbons, and particularly the methyl-phenanthrene index (MPI-1), are powerful indicators which can be used to define the oil window in Proterozoic and Early Palaeozoic petroleum source rocks and to compare maturities and detect migration in very old oils . The conventional vitrinite reflectance yardstick for maturity is not readily translated to these ancient sediments because they predate the evolution of the land plant precursors to vitrinite. While whole-rock geochemical tools such as Rock-Eval and TOC are useful for evaluation of petroleum potential, they can be imprecise when applied to maturity assessments.In this study, we carried out a range of detailed geochemical analyses on McArthur Basin boreholes penetrating the Roper Group source rocks. We determined the depth profiles for hydrocarbon generation based on Rock-Eval analysis of whole-rock, solvent-extracted rock, kerogen elemental H/C ratio and pyrolysis GC. Although we found that Hydrogen Index (HI) and the Tmax parameter were strongly correlated with other maturation indicators, they were not sufficiently sensitive nor were they universally applicable. Maturation measurements based on saturated biomarkers were not useful either because of the low abundance of these compounds in most Roper Group bitumens and oils.


1993 ◽  
Vol 33 (1) ◽  
pp. 280 ◽  
Author(s):  
P.J. Hawkins ◽  
P.M. Green

Exploration activity in the northern Galilee Basin has been sporadic and is still at an immature stage. Recent geological investigations by the Queensland Department of Resource Industries have brought about a better understanding of the geological setting and stratigraphic evolution of the basin. These investigations also identified key source and reservoir units, determined maturation trends and delineated areas with hydrocarbon potential. The geological results indicate that the Aramac Coal Measures and Betts Creek beds contain the most favourable source and reservoir rocks. Thermal modelling of vitrinite reflectance data suggests that various parts of the basin reached maturity for hydrocarbon generation at different times. Integration of the geological results and thermal modelling has enabled exploration concepts to be developed for the basin. Application of these concepts has highlighted areas along the western margin of the Koburra Trough and eastern Maneroo Platform, and areas adjacent to the Cork Fault and the Wetherby Structure in the Lovelle Depression that warrant further exploration.


2003 ◽  
Vol 43 (1) ◽  
pp. 59 ◽  
Author(s):  
I.R. Duddy ◽  
B. Erout ◽  
P.F. Green ◽  
P.V. Crowhurst ◽  
P.J. Boult

Reconstructed thermal and structural histories derived from new AFTA Apatite Fission Track Analysis, vitrinite reflectance and (U-Th)/He apatite dating results from the Morum–1 well, Otway Basin, reveal that the Morum High is a mid-Tertiary inversion structure. Uplift and erosion commencing in the Late Paleocene to mid-Eocene (57–40 Ma) removed around 1,500 m of sedimentary section. The eroded section is attributed to the Paleocene- Eocene Wangerrip Group which is considered to have been deposited in a major depocentre in the vicinity of the present Morum High. This depocentre is interpreted to have been one of a number of transtensional basins developed at the margin of the Morum Sub-basin and adjacent to the Tartwaup Hinge Zone and Mussel Fault during the Early Tertiary. The Portland Trough in Victoria represents a similar depocentre in which over 1,500 m of Wangerrip Group section, mostly represented by deltaic sediments of the Early Eocene Dilwyn Formation, is still preserved.Quantification of the maximum paleotemperature profile in Morum–1 immediately prior to Late Paleocene to mid-Eocene inversion shows that the paleo-geothemal gradient at the time was between 21 and 31°C/km, similar to the present-day level of 29°C/km, demonstrating that there has been little change in basal heat flow since the Early Tertiary.Reconstruction of the thermal history at the Trumpet–1 location reveals no evidence for any periods of significant uplift and erosion, demonstrating the relative stability of this part of the Crayfish Platform since the Late Cretaceous.The thermal and burial histories at Morum–1 and Trumpet–1 have been used to calibrate a Temis2D hydrocarbon generation and migration model along seismic line 85-13, encompassing the Crayfish Platform, Morum High and Morum Sub-basin. The model shows the cessation of active hydrocarbon generation from Eumeralla Formation source rocks around the Morum High due to cooling at 45 Ma (within the range 57–40 Ma) resulting from uplift and erosion of a Wangerrip Group basin. There has been almost no hydrocarbon generation from the Eumeralla Formation beneath the Crayfish Platform.Migration of hydrocarbons generated from the Eumeralla Formation began in the Late Cretaceous in the Morum Sub-basin and is predicted to continue to the present day, with the potential for accumulations in suitably placed reservoirs within the Late Cretaceous package both within the Morum Sub-basin and at the southern margin of the Crayfish Platform.


2015 ◽  
Author(s):  
Jamal A. Madi ◽  
Elhadi M. Belhadj

Abstract Oman's petroleum systems are related to four known source rocks: the Precambrian-Lower Cambrian Huqf, the Lower Silurian Sahmah, the Late Jurassic Shuaiba-Tuwaiq and the Cretaceous Natih. The Huqf and the Natih have sourced almost all the discovered fields in the country. This study examines the shale-gas and shale-oil potential of the Lower Silurian Sahmah in the Omani side of the Rub al Khali basin along the Saudi border. The prospective area exceeds 12,000 square miles (31,300 km2). The Silurian hot shale at the base of the Sahmah shale is equivalent to the known world-class source rock, widespread throughout North Africa (Tannezouft) and the Arabian Peninsula (Sahmah/Qusaiba). Both thickness and thermal maturities increase northward toward Saudi Arabia, with an apparent depocentre extending southward into Oman Block 36 where the hot shale is up to 55 m thick and reached 1.4% vitrinite reflectance (in Burkanah-1 and ATA-1 wells). The present-day measured TOC and estimated from log signatures range from 0.8 to 9%. 1D thermal modeling and burial history of the Sahmah source rock in some wells indicate that, depending on the used kinetics, hydrocarbon generation/expulsion began from the Early Jurassic (ca 160 M.a.b.p) to Cretaceous. Shale oil/gas resource density estimates, particularly in countries and plays outside North America remain highly uncertain, due to the lack of geochemical data, the lack of history of shale oil/gas production, and the valuation method undertaken. Based on available geological and geochemical data, we applied both Jarvie (2007) and Talukdar (2010) methods for the resource estimation of: (1) the amount of hydrocarbon generated and expelled into conventional reservoirs and (2) the amount of hydrocarbon retained within the Silurian hot shale. Preliminary results show that the hydrocarbon potential is distributed equally between wet natural gas and oil within an area of 11,000 square mile. The Silurian Sahmah shale has generated and expelled (and/or partly lost) about 116.8 billion of oil and 275.6 TCF of gas. Likewise, our estimates indicate that 56 billion of oil and 273.4 TCF of gas are potentially retained within the Sahmah source rock, making this interval a future unconventional resource play. The average calculated retained oil and gas yields are estimated to be 6 MMbbl/mi2 (or 117 bbl oil/ac-ft) and 25.3 bcf/mi2 (or 403 mcf gas/ac-ft) respectively. To better compare our estimates with Advanced Resources International (EIA/ARI) studies on several Silurian shale plays, we also carried out estimates based on the volumetric method. The total oil in-place is 50.2 billion barrels, while the total gas in-place is 107.6 TCF. The average oil and gas yield is respectively 7 MMbbl/mi2 and 15.5 bcf/mi2. Our findings, in term of oil and gas concentration, are in line or often smaller than all the shale oil/gas plays assessed by EIA/ARI and others.


2021 ◽  
Vol 11 (6) ◽  
pp. 2299-2313
Author(s):  
Khalid Latif ◽  
Muhammad Hanif ◽  
Syed Anjum Shah ◽  
Irfan U. Jan ◽  
Muhammad Younis Khan ◽  
...  

AbstractIn this study the hydrocarbon generation potential of the coal and coaly shale samples collected from coal mines in Attock-Cherat Range of Pakistan is optically and analytically evaluated. These samples, representing the Paleocene Hangu Formation, are analyzed across a range of thermal maturity stages to understand their hydrocarbon generation potential. The visual examination of maceral type and values of vitrinite reflectance have been considered while interpreting the geochemical results for the coal and associated sediments from the Paleocene Hangu Formation. The maceral group is dominated by vitrinite, mainly collodetrinite, followed by inertinite and liptinite, and suggests Type III kerogen for the samples. The geochemical parameters suggest that the samples are post mature, however, the vitrinite reflectance measurements show late mature conditions for a gas-prone generation. The overall petrographical and geochemical data suggest that the coal and coaly shale appear to occupy the gas window and fall in the dry gas zone. Based on the maceral types and Rock–Eval data, an anoxic to terrestrial environment is inferred for the deposition of the coal and associated sediments. The vitrinite reflectance, Rock–Eval pyrolysis, and the type and frequency of macerals show that the coal is of good quality, i.e., medium to high volatile bituminous and hard brown coal, mature, and is lying in the gas window. Oxygen index is continuously low throughout the analyzed interval, which further supports that the coal is of good quality.


Author(s):  
Mostafa A ◽  
Sehim A ◽  
El Barkooky A ◽  
Hammed M

— The sedimentary basins of Kharite, Nuqra, and Komombo are outlined with the potential geophysical data where the southern N-S Egyptian Nile course separates Nuqra and Kharit as the East Nile basins. Two commercial discoveries of Al Barka and West El Barka oil fields have been declared in the West Nile basin of Komombo. This work presents our insights on the structural setting and hydrocarbon system of these basins through our integrating results in form of interpreted seismic profiles and structural mapping on the different horizons, 1D basin modeling, geochemistry, and geologic maps based on high-resolution satellite images. Structurally, these rift basins are developed as NWtrending asymmetric fault-bounded half-grabens (oblique to the Red Sea trend) through the reactivation of a major Precambrian Pan African tectonic zone by the Neocomian extensional tectonics. The high potential source rock with up to 7wt. % TOC of kerogen II are proved in the Komombo basin. The seismic and drilling results show Neocomian-Barremian maximum subsidence and the possible occurrence of similar Neocomian source rocks in the eastern Nile basins. Additionally, the convenient clastic reservoir rocks occurred in the entire stratigraphic succession and seal capacity in the upper interval of Senonian-Paleocene. Good opportunities for hydrocarbon structural trapping take place in form of rotated fault blocks by the Early Cretaceous extensional rift and mildly inverted structures by a long span of Late Cretaceous to post-Early Eocene Syrian Arc compression in South Egypt. These elements were verified by Al Baraka discovery and present a promising play concept for hydrocarbon potential in the Kharit and Nuqra basins. The geochemical data indicate different basins exhumation and maturation levels, as the 0.5% calculated vitrinite reflectance "Ro" values occur at the depths of 1200ft and 2100ft in Nuqra and Komombo basins, respectively


Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 1) ◽  
Author(s):  
Xiaojun Li ◽  
Jingchun Tian ◽  
Miao Wang ◽  
Yong Chen

Abstract The carbonate rocks were collected from the Qum Formation in outcrop of the northern Garmsar Area, Iran. In order to evaluating the hydrocarbon generation prospects of these source rocks, we analyzed their geochemical characteristics, including the abundance, type, and maturity of organic matter, and investigated their formation conditions by analyzing the characteristics of soluble organic matter and sedimentary environment. The results show that the organic matter abundance of the source rocks in the Qum Formation in the Garmsar Area is low in the north and west. The organic matter type is mainly II1-II2, locally showing type I and III, and in general, it is conducive to hydrocarbon generation. The maturity of organic matter is low, showing the Tmax between 416°C and 439°C, vitrinite reflectance (Ro) from 0.49% to 0.83%, which indicate it is at the stage of low to moderate maturity. The soluble organic matter characteristics indicated that the organic matter evolution of the source rocks in the Qum Formation is low. Through comparison between the study area and other areas, and different places within the working area, the abundance, type, and maturity of organic matter of the source rocks in the Qum Formation are different, caused by the basin facie zones, sedimentary environment, and history of sedimentation of the source rocks. Overall, the source rock in the Qum Formation in Garmsar Area has good prospects of hydrocarbon generation. This study has important significance for further exploration in the Garmsar Area.


2018 ◽  
Vol 36 (5) ◽  
pp. 1229-1244
Author(s):  
Xiao-Rong Qu ◽  
Yan-Ming Zhu ◽  
Wu Li ◽  
Xin Tang ◽  
Han Zhang

The Huanghua Depression is located in the north-centre of Bohai Bay Basin, which is a rift basin developed in the Mesozoic over the basement of the Huabei Platform, China. Permo-Carboniferous source rocks were formed in the Huanghua Depression, which has experienced multiple complicated tectonic alterations with inhomogeneous uplift, deformation, buried depth and magma effect. As a result, the hydrocarbon generation evolution of Permo-Carboniferous source rocks was characterized by discontinuity and grading. On the basis of a detailed study on tectonic-burial history, the paper worked on the burial history, heating history and hydrocarbon generation history of Permo-Carboniferous source rocks in the Huanghua Depression combined with apatite fission track testing and fluid inclusion analyses using the EASY% Ro numerical simulation. The results revealed that their maturity evolved in stages with multiple hydrocarbon generations. In this paper, we clarified the tectonic episode, the strength of hydrocarbon generation and the time–spatial distribution of hydrocarbon regeneration. Finally, an important conclusion was made that the hydrocarbon regeneration of Permo-Carboniferous source rocks occurred in the Late Cenozoic and the subordinate depressions were brought forward as advantage zones for the depth exploration of Permo-Carboniferous oil and gas in the middle-northern part of the Huanghua Depression, Bohai Bay Basin, China.


Sign in / Sign up

Export Citation Format

Share Document