GEOCHEMICAL TOOLS FOR EVALUATING PETROLEUM GENERATION IN MIDDLE PROTEROZOIC SEDIMENTS OF THE McARTHUR BASIN, NORTHERN TERRITORY, AUSTRALIA

1994 ◽  
Vol 34 (1) ◽  
pp. 692 ◽  
Author(s):  
Roger E. Summons ◽  
Dennis Taylor ◽  
Christopher J. Boreham

Maturation parameters based on aromatic hydrocarbons, and particularly the methyl-phenanthrene index (MPI-1), are powerful indicators which can be used to define the oil window in Proterozoic and Early Palaeozoic petroleum source rocks and to compare maturities and detect migration in very old oils . The conventional vitrinite reflectance yardstick for maturity is not readily translated to these ancient sediments because they predate the evolution of the land plant precursors to vitrinite. While whole-rock geochemical tools such as Rock-Eval and TOC are useful for evaluation of petroleum potential, they can be imprecise when applied to maturity assessments.In this study, we carried out a range of detailed geochemical analyses on McArthur Basin boreholes penetrating the Roper Group source rocks. We determined the depth profiles for hydrocarbon generation based on Rock-Eval analysis of whole-rock, solvent-extracted rock, kerogen elemental H/C ratio and pyrolysis GC. Although we found that Hydrogen Index (HI) and the Tmax parameter were strongly correlated with other maturation indicators, they were not sufficiently sensitive nor were they universally applicable. Maturation measurements based on saturated biomarkers were not useful either because of the low abundance of these compounds in most Roper Group bitumens and oils.

1982 ◽  
Vol 22 (1) ◽  
pp. 5
Author(s):  
A. R. Martin ◽  
J. D. Saxby

The geology and exploration history of the Triassic-Cretaceous Clarence-Moreton Basin are reviewed. Consideration of new geochemical data ('Rock-Eval', vitrinite reflectance, gas chromatography of extracts, organic carbon and elemental analysis of coals and kerogens) gives further insights into the hydrocarbon potential of the basin. Although organic-rich rocks are relatively abundant, most source rocks that have achieved the levels of maturation necessary for hydrocarbon generation are gas-prone. The exinite-rich oil-prone Walloon Coal Measures are in most parts relatively immature. Some restraints on migration pathways are evident and igneous and tectonic events may have disturbed potentially well-sealed traps. Further exploration is warranted, even though the basin appears gas-prone and the overall prospects for hydrocarbons are only fair. The most promising areas seem to be west of Toowoomba for oil and the Clarence Syncline for gas.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 650 ◽  
Author(s):  
Jinliang Zhang ◽  
Jiaqi Guo ◽  
Jinshui Liu ◽  
Wenlong Shen ◽  
Na Li ◽  
...  

The Lishui Sag is located in the southeastern part of the Taibei Depression, in the East China Sea basin, where the sag is the major hydrocarbon accumulation zone. A three dimensional modelling approach was used to estimate the mass of petroleum generation and accumulated during the evolution of the basin. Calibration of the model, based on measured maturity (vitrinite reflectance) and borehole temperatures, took into consideration two main periods of erosion events: a late Cretaceous to early Paleocene event, and an Oligocene erosion event. The maturation histories of the main source rock formations were reconstructed and show that the peak maturities have been reached in the west central part of the basin. Our study included source rock analysis, measurement of fluid inclusion homogenization temperatures, and basin history modelling to define the source rock properties, the thermal evolution and hydrocarbon generation history, and possible hydrocarbon accumulation processes in the Lishui Sag. The study found that the main hydrocarbon source for the Lishui Sag are argillaceous source rocks in the Yueguifeng Formation. The hydrocarbon generation period lasted from 58 Ma to 32 Ma. The first period of hydrocarbon accumulation lasted from 51.8 Ma to 32 Ma, and the second period lasted from 23 Ma to the present. The accumulation zones mainly located in the structural high and lithologic-fault screened reservoir filling with the hydrocarbon migrated from the deep sag in the south west direction.


2021 ◽  
Vol 11 (10) ◽  
pp. 3663-3688
Author(s):  
Amin Tavakoli

AbstractThe aim of this study is to provide a better understanding of the type of source input, quality, quantity, the condition of depositional environment and thermal maturity of the organic matter from Bukit Song, Sarawak, which has not been extensively studied for hydrocarbon generation potential. Petrological and geochemical analyses were performed on 13 outcrop samples of the study location. Two samples, having type III and mixed kerogen, showed very-good-to-excellent petroleum potential based on bitumen extraction and data from Rock–Eval analysis. The rest of the samples are inert—kerogen type IV. In terms of thermal maturity based on vitrinite reflectance, the results of this paper are akin to previous studies done in the nearby region reported as either immature or early mature. Ph/n-C18 versus Pr/n-C17 data showed that the major concentration of samples is within peat coal environment, whilst two samples were associated with anoxic marine depositional environment, confirmed by maceral content as well. Macerals mainly indicated terrestrial precursors and, overall, a dominance of vitrinite. Quality of the source rock based on TOC parameter indicated above 2 wt. % content for the majority of samples. However, consideration of TOC and S2 together showed only two samples to have better source rocks. Existence of cutinite, sporinite and greenish fluorescing resinite macerals corroborated with the immaturity of the analysed coaly samples. Varying degrees of the bitumen staining existed in a few samples. Kaolinite and illite were the major clays based on XRD analysis, which potentially indicate low porosity. This study revealed that hydrocarbon-generating potential of Bukit Song in Sarawak is low.


Author(s):  
Mohammed Hail Hakimi ◽  
Abbas F. Gharib ◽  
Nor Syazwani Z. Abidin ◽  
Madyan M. A. Yahya

AbstractPliocene shales included in the post-rift Abbas Formation were recovered from an exploratory well (Kathib-01) in the Tihamah Basin and geochemically analyzed. A preliminary evaluation of the organic facies of the Abbas shales and their petroleum generation potential was conducted based on basic organic geochemical results. Most Abbas shale samples had total organic carbon (TOC) contents < 1% and a fair source potential, while the remaining samples, with TOC contents > 1%, had a relatively good potential. Overall, the Rock–Eval hydrogen index values of the shales analyzed were between 96 and 234 mg of hydrocarbon per gram of TOC (mg HC/g TOC), indicating two dominant organic facies: types III and II/III kerogen, which indicate the presence of mainly gas- and oil-prone source rocks. We conclude that the Pliocene Abbas shales in the Tihamah Basin are still in a very early-mature stage (with respect to the oil window) and, hence, have not generated petroleum yet.


1983 ◽  
Vol 23 (1) ◽  
pp. 64
Author(s):  
B. M. Thomas ◽  
S. A. Brown

All known commercial hydrocarbon accumulatios in the Perth Basin, Western Australia, occur within the Dandaragan Trough or along its flanks. Land plant-rich source rocks are widely distributed throughout the Permian, Triassic and Jurassic sections of the basin. Hydrocarbon accumulations are mainly dry gas and gas/condensate, although secondary occurrences of light, waxy oil are also of economic significance. The Lower Jurassic Cattamarra Coal Measures provide both source and reservoir for gas/condensate accumulations in the central Dandaragan Trough (Walyering, Gingin). Gas at Dongara, Mondarra, Yardarino and the more recent discovery, Woodada, may have been generated from both the Lower Triassic and Permian, although there is some evidence that the Permian is the principal source. The associated thin oil legs encountered in parts of these fields and at Mt Horner is attributed to the oil-prone basal Kockatea Shale (Lower Triassic). Regional studies indicate a Neocomian uplift of the western flank of the Dandaragan Trough, centred on the Beagle Ridge. Vitrinite reflectance data suggest that the uplift and erosion of the Beagle Ridge was accompanied by higher geothermal gradients, up to 7.5°C/100 m in the Neocomian. Modern gradients of up to 5.0°C/100 m have been measured on the Beagle Ridge and possibly represent this waning geothermal anomaly. In contrast, low geothermal gradients are found in the Dandaragan Trough (around 2.5°C/100 m), and hydrocarbon generation presently occurs at great depths where sandstone reservoir properties are often inadequate for commercial production.


2017 ◽  
Vol 47 (2) ◽  
pp. 880
Author(s):  
D. Rallakis ◽  
G. Siavalas ◽  
G. Oskay ◽  
D. Tsimiklis ◽  
K. Christanis

The main objective of this paper is to study by means of Organic Petrology techniques, the maturity of the dispersed organic matter from certain sedimentary formations of the Ionian Zone, such as the Bituminous Shale, the Upper Siliceous Vigla Formation and the Bituminous Sandstone. The samples were collected from outcropping sites located in the region of Epirus. Initially they were treated with acids (HCl-HF) to remove most of the carbonate and silicate minerals. Then a ZnCl2 solution was used to concentrate the organic-rich fraction. Total Organic Carbon (TOC) content was determined applying dichromate oxidation. Polished blocks were prepared from the concentrated organic matter mounted in epoxy resin and examined under the coal-petrography microscope. Emphasis was given to maceral identification and vitrinite reflectance (R) measurements, which provide information regarding the quality and the maturity of the organic matter respectively, with implications for the petroleum generation potential regardless the level of alteration. The TOC and Rr values (4.74% and 0.68%, respectively) confirm to the oil potential of the Lower Jurassic Posidonia Shale. Nevertheless, it is suggested that detailed and higher resolution sampling focusing on the Lower Posidonia Shale, as well as organic petrography analyses coupled with Rock-Eval pyrolysis should be carried out in order to accurately determine its quality as petroleum source rocks.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Haiping Huang ◽  
Hong Zhang ◽  
Zheng Li ◽  
Mei Liu

To the accurate reconstruction of the hydrocarbon generation history in the Dongying Depression, Bohai Bay Basin, East China, core samples of the Eocene Shahejie Formation from 3 shale oil boreholes were analyzed using organic petrology and organic geochemistry methods. The shales are enriched in organic matter with good to excellent hydrocarbon generation potential. The maturity indicated by measured vitrinite reflectance (%Ro) falls in the range of 0.5–0.9% and increases with burial depth in each well. Changes in biomarker and aromatic hydrocarbon isomer distributions and biomarker concentrations are also unequivocally correlated with the thermal maturity of the source rocks. Maturity/depth relationships for hopanes, steranes, and aromatic hydrocarbons, constructed from core data indicate different well locations, have different thermal regimes. A systematic variability of maturity with geographical position along the depression has been illustrated, which is a dependence on the distance to the Tanlu Fault. Higher thermal gradient at the southern side of the Dongying Depression results in the same maturity level at shallower depth compared to the northern side. The significant regional thermal regime change from south to north in the Dongying Depression may exert an important impact on the timing of hydrocarbon maturation and expulsion at different locations. Different exploration strategies should be employed accordingly.


2022 ◽  
pp. 1-42
Author(s):  
Xiaojun Zhu ◽  
Jingong Cai ◽  
Feng Liu ◽  
Qisheng Zhou ◽  
Yue Zhao ◽  
...  

In natural environments, organic-clay interactions are strong and cause organo-clay composites (a combination between organic matter [OM] and clay minerals) to be one of the predominant forms for OM occurrence, and their interactions greatly influence the hydrocarbon (HC) generation of OM within source rocks. However, despite occurring in nature, dominating the OM occurrence, and having unique HC generation ways, organo-clay composites have rarely been investigated as stand-alone petroleum precursors. To improve this understanding, we have compared the Rock-Eval pyrolysis parameters derived from more than 100 source rocks and their corresponding <2 μm clay-sized fractions (representing organo-clay composites). The results show that all of the Rock-Eval pyrolysis parameters in bulk rocks are closely positively correlated with those in their clay-sized fractions, but in clay-sized fractions the quality of OM for HC generation is poorer, in that the pyrolysable organic carbon levels and hydrogen index values are lower, whereas the residual organic carbon levels are higher than those in bulk rocks. Being integrated with the effects of organic-clay interactions on OM occurrence and HC generation, our results suggest that organo-clay composites are stand-alone petroleum precursors for HC generation occurring in source rocks, even if the source rocks exist in great varieties in their attributes. Our source material for HC generation comprehensively integrates the original OM occurrence and HC generation behavior in natural environments, which differs from kerogen and is much closer to the actual source material of HC generation in source rocks, and it calls for further focus on organic-mineral interactions in studies of petroleum systems.


1986 ◽  
Vol 26 (1) ◽  
pp. 172 ◽  
Author(s):  
R. P. Philp ◽  
T. D. Gilbert

A series of twelve oils and five source rocks and potential source rocks from the Surat Basin have been subjected to detailed geochemical analyses. Particular attention has been given to determining the distribution of various classes of biomarkers such as the steranes and triterpanes. The results from this study have shown that the Cabawin oil is derived from the Permian Back Creek Formation and has a high content of marine organic source material. The Triassic/Jurassic oils have a different source from the Cabawin oil and are dominated by land plant source material. Within the Triassic/Jurassic oils there are subtle variations in biomarker distributions suggesting that some oils may have small but additional amounts of different source materials. A number of Cretaceous and Jurassic potential source rocks (i.e. Walloon) have biomarker parameters clearly indicating levels of maturity at which oil generation is impossible.A number of the oils in this basin are extensively biodegraded. In particular biodegradation has been very heavy in the Riverslea/Yapunyah area. With the exception of Conloi oil, all the oils appear to have been exposed to similar levels of maturity. A biomarker migration parameter has provided some tentative evidence to suggest that, in general, oils in the southern part of the basin have migrated further than those in the northern part.In summary, the biomarker data from oils and source rocks of the Surat Basin have been used to provide a new insight into the origin of the Surat Basin oils and their post-formation history.


Sign in / Sign up

Export Citation Format

Share Document