scholarly journals Geochemical Evaluation of the Cretaceous Mudrocks and Sandstones (Wackes) in the Southern Bredasdorp Basin, Offshore South Africa: Implications for Hydrocarbon Potential

Minerals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 595
Author(s):  
Temitope Love Baiyegunhi ◽  
Kuiwu Liu ◽  
Oswald Gwavava ◽  
Nicola Wagner ◽  
Christopher Baiyegunhi

The southern Bredasdorp Basin, off the south coast of South Africa, is only partly understood in terms of its hydrocarbon potential when compared to the central and northern parts of the basin. Hydrocarbon potential assessments in this part of the basin have been limited, perhaps because the few drilled exploration wells were unproductive for hydrocarbons, yielding trivial oil and gas. The partial integration of data in the southern Bredasdorp Basin provides another reason for the unsuccessful oil and gas exploration. In this study, selected Cretaceous mudrocks and sandstones (wacke) from exploration wells E-AH1, E-AJ1, E-BA1, E-BB1 and E-D3 drilled in the southern part of the Bredasdorp Basin were examined to assess their total organic carbon (TOC), thermal maturity, organic matter type and hydrocarbon generation potential. The organic geochemical results show that these rocks have TOC contents ranging from 0.14 to 7.03 wt.%. The hydrogen index (HI), oxygen index (OI), and hydrocarbon index (S2/S3) values vary between 24–263 mg HC/g TOC, 4–78 mg CO2/g TOC, and 0.01–18 mgHC/mgCO2 TOC, respectively, indicating predominantly Type III and IV kerogen with a minor amount of mixed Type II/III kerogen. The mean vitrinite reflectance values vary from 0.60–1.20%, indicating that the samples are in the oil-generation window. The Tmax and PI values are consistent with the mean vitrinite reflectance values, indicating that the Bredasdorp source rocks have entered the oil window and are considered as effective source rocks in the Bredasdorp Basin. The hydrocarbon genetic potential (SP), normalized oil content (NOC) and production index (PI) values all indicate poor to fair hydrocarbon generative potential. Based on the geochemical data, it can be inferred that most of the mudrocks and sandstones (wackes) in the southern part of the Bredasdorp Basin have attained sufficient burial depth and thermal maturity for oil and gas generation potential.

1982 ◽  
Vol 22 (1) ◽  
pp. 5
Author(s):  
A. R. Martin ◽  
J. D. Saxby

The geology and exploration history of the Triassic-Cretaceous Clarence-Moreton Basin are reviewed. Consideration of new geochemical data ('Rock-Eval', vitrinite reflectance, gas chromatography of extracts, organic carbon and elemental analysis of coals and kerogens) gives further insights into the hydrocarbon potential of the basin. Although organic-rich rocks are relatively abundant, most source rocks that have achieved the levels of maturation necessary for hydrocarbon generation are gas-prone. The exinite-rich oil-prone Walloon Coal Measures are in most parts relatively immature. Some restraints on migration pathways are evident and igneous and tectonic events may have disturbed potentially well-sealed traps. Further exploration is warranted, even though the basin appears gas-prone and the overall prospects for hydrocarbons are only fair. The most promising areas seem to be west of Toowoomba for oil and the Clarence Syncline for gas.


1984 ◽  
Vol 24 (1) ◽  
pp. 393 ◽  
Author(s):  
V. L. Passmore ◽  
M. J. Sexton

The Adavale Basin of southwestern Queensland consists of a main depression and several isolated synclinal extensions, traditionally referred to as troughs. The depressions and troughs are erosional remnants of a once more extensive Devonian depositional basin, and are now completely buried by sediments of the overlying Cooper, Galilee and Eromanga Basins. Geophysical and drilling investigations undertaken since 1959 are the only source of information on the Adavale Basin. A single sub-economic discovery of dry gas at Gilmore and a few shows of oil and gas are the only hydrocarbons located in the basin to date.In 1980, the Bureau of Mineral Resources in cooperation with the Geological Survey of Queensland commenced a major, multidisciplinary investigation of the basins in southwestern Queensland. Four long (> 200 km) seismic lines from this study over the Adavale Basin region and geochemical data from 20 wells were used to interpret the Adavale Basin's development and its present hydrocarbon potential.The new seismic reflection data allow the well-explored main depression to be correlated with the detached troughs, some of which have little or no well information. The BMR seismic data show that these troughs were previously part of one large depositional basin in the Devonian, the depocentre of which lay east of a north-trending hingeline. Structural features and Devonian depositional limits and patterns have been modified from earlier interpretations as a result of the new seismic coverage. The maximum sediment thickness is re-interpreted to be 8500 m, considerably thicker than previous interpretation.recognised. The first one, a diachronous Middle Devonian unconformity, is the most extensive, and reflects the mobility of the basement during the basin's early history. The second unconformity within the Late Devonian Buckabie Formation reveals that there were two phases of deformation of the basin sediments.The geochemical results reported in this study show that most of the Adavale Basin sediments have very low concentrations of organic carbon and hydrocarbon fractions. Maturity profiles indicate that the best source rocks of the basin are now in the mature stage for hydrocarbon generation. However, at Gilmore and in the Cooladdi Trough, they have reached the dry gas stage. The maturity data provide additional evidence for the marked break in deposition and significant erosion during the Middle Devonian recognised on the seismic records, and extend the limits of this sedimentary break into the northern part of the main depression.Hydrocarbon potential of the Adavale Basin is fair to poor. In the eastern part of the basin, where most of the data are available, the prospects are better for gas than oil. Oil prospectivity may be improved in any exinite-rich areas that exist farther west, where palaeo-temperatures were lower.


2020 ◽  
Vol 17 (6) ◽  
pp. 1540-1555
Author(s):  
Jin-Jun Xu ◽  
Qiang Jin

AbstractNatural gas and condensate derived from Carboniferous-Permian (C-P) coaly source rocks discovered in the Dagang Oilfield in the Bohai Bay Basin (east China) have important implications for the potential exploration of C-P coaly source rocks. This study analyzed the secondary, tertiary, and dynamic characteristics of hydrocarbon generation in order to predict the hydrocarbon potentials of different exploration areas in the Dagang Oilfield. The results indicated that C-P oil and gas were generated from coaly source rocks by secondary or tertiary hydrocarbon generation and characterized by notably different hydrocarbon products and generation dynamics. Secondary hydrocarbon generation was completed when the maturity reached vitrinite reflectance (Ro) of 0.7%–0.9% before uplift prior to the Eocene. Tertiary hydrocarbon generation from the source rocks was limited in deep buried sags in the Oligocene, where the products consisted of light oil and gas. The activation energies for secondary and tertiary hydrocarbon generation were 260–280 kJ/mol and 300–330 kJ/mol, respectively, indicating that each instance of hydrocarbon generation required higher temperature or deeper burial than the previous instance. Locations with secondary or tertiary hydrocarbon generation from C-P coaly source rocks were interpreted as potential oil and gas exploration regions.


2012 ◽  
Vol 63 (4) ◽  
pp. 335-342 ◽  
Author(s):  
Paweł Kosakowski ◽  
Magdalena Wróbel

Burial history, thermal history and hydrocarbon generation modelling of the Jurassic source rocks in the basement of the Polish Carpathian Foredeep and Outer Carpathians (SE Poland)Burial history, thermal maturity, and timing of hydrocarbon generation were modelled for the Jurassic source rocks in the basement of the Carpathian Foredeep and marginal part of the Outer Carpathians. The area of investigation was bounded to the west by Kraków, to the east by Rzeszów. The modelling was carried out in profiles of wells: Będzienica 2, Dębica 10K, Góra Ropczycka 1K, Goleszów 5, Nawsie 1, Pławowice E1 and Pilzno 40. The organic matter, containing gas-prone Type III kerogen with an admixture of Type II kerogen, is immature or at most, early mature to 0.7 % in the vitrinite reflectance scale. The highest thermal maturity is recorded in the south-eastern part of the study area, where the Jurassic strata are buried deeper. The thermal modelling showed that the obtained organic matter maturity in the initial phase of the "oil window" is connected with the stage of the Carpathian overthrusting. The numerical modelling indicated that the onset of hydrocarbon generation from the Middle Jurassic source rocks was also connected with the Carpathian thrust belt. The peak of hydrocarbon generation took place in the orogenic stage of the overthrusting. The amount of generated hydrocarbons is generally small, which is a consequence of the low maturity and low transformation degree of kerogen. The generated hydrocarbons were not expelled from their source rock. An analysis of maturity distribution and transformation degree of the Jurassic organic matter shows that the best conditions for hydrocarbon generation occurred most probably in areas deeply buried under the Outer Carpathians. It is most probable that the "generation kitchen" should be searched for there.


2021 ◽  
Vol 11 (10) ◽  
pp. 3663-3688
Author(s):  
Amin Tavakoli

AbstractThe aim of this study is to provide a better understanding of the type of source input, quality, quantity, the condition of depositional environment and thermal maturity of the organic matter from Bukit Song, Sarawak, which has not been extensively studied for hydrocarbon generation potential. Petrological and geochemical analyses were performed on 13 outcrop samples of the study location. Two samples, having type III and mixed kerogen, showed very-good-to-excellent petroleum potential based on bitumen extraction and data from Rock–Eval analysis. The rest of the samples are inert—kerogen type IV. In terms of thermal maturity based on vitrinite reflectance, the results of this paper are akin to previous studies done in the nearby region reported as either immature or early mature. Ph/n-C18 versus Pr/n-C17 data showed that the major concentration of samples is within peat coal environment, whilst two samples were associated with anoxic marine depositional environment, confirmed by maceral content as well. Macerals mainly indicated terrestrial precursors and, overall, a dominance of vitrinite. Quality of the source rock based on TOC parameter indicated above 2 wt. % content for the majority of samples. However, consideration of TOC and S2 together showed only two samples to have better source rocks. Existence of cutinite, sporinite and greenish fluorescing resinite macerals corroborated with the immaturity of the analysed coaly samples. Varying degrees of the bitumen staining existed in a few samples. Kaolinite and illite were the major clays based on XRD analysis, which potentially indicate low porosity. This study revealed that hydrocarbon-generating potential of Bukit Song in Sarawak is low.


2016 ◽  
Author(s):  
Samuel Salufu ◽  
Rita Onolemhemhen ◽  
Sunday Isehunwa

ABSTRACT This paper sought to use information from outcrop sections to characterize the source and reservoir rocks in a basin in order to give indication(s) for hydrocarbon generation potential in a basin in minimizing uncertainty and risk that are allied with exploration and field development of oil and gas, using subsurface data from well logs, well sections, seismic and core. The methods of study includes detailed geological, stratigraphical, geochemical, structural,, petro-graphical, and sedimentological studies of rock units from outcrop sections within two basins; Anambra Basin and Abakaliki Basin were used as case studies. Thirty eight samples of shale were collected from these Basins; geochemical analysis (rockeval) was performed on the samples to determine the total organic content (TOC) and to assess the oil generating window. The results were analyzed using Rock wares, Origin, and Surfer software in order to properly characterize the potential source rock(s) and reservoir rock(s) in the basins, and factor(s) that can favour hydrocarbon traps. The results of the geological, stratigraphical, sedimentological, geochemical, and structural, were used to developed a new model for hydrocarbon generation in the Basins. The result of the geochemical analysis of shale samples from the Anambra Basin shows that the TOC values are ≥ 1wt%, Tmax ≥ 431°C, Vitrinite reflectance values are ≥ 0.6%, and S1+S2 values are > 2.5mg/g for Mamu Formation while shale samples from other formations within Anambra Basin fall out of these ranges. The shale unit in the Mamu Formation is the major source rock for oil generation in the Anambra Basin while others have potential for gas generation with very little oil generation. The shale samples from Abakaliki Basin shows that S1+S2 values range from< 1 – 20mg/g, TOC values range from 0.31-4.55wt%, vitrinite reflectance ranges from 0.41-1.24% and Tmax ranges from423°C – 466°C. This result also shows that there is no source rock for oil generation in Abakaliki Basin; it is either gas or graphite. This observation indicates that all the source rocks within Abakaliki Basin have exceeded petroleum generating stage due to high geothermal heat resulting from deep depth or the shale units have not attained catagenesis stage as a result of S1+S2 values lesser than 2.5mg/g despite TOC values of ≥ 0.5wt% and vitrinite reflectance values of ≥ 0.6%. The novelty of this study is that the study has been able to show that here there is much more oil than the previous authors claimed, and the distribution of this oil and gas in the basins is controlled by two major factors; the pattern of distribution of the materials of the source rock prior to subsidence and during the subsidence period in the basin, and the pattern and the rate of tectonic activities, and heat flow in the basin. If these factors are known, it would help to reduce the uncertainties associated with exploration for oil and gas in the two basins.


2018 ◽  
Vol 37 (1) ◽  
pp. 394-411 ◽  
Author(s):  
Zi-Ran Jiang ◽  
Yin-Hui Zuo ◽  
Mei-Hua Yang ◽  
Yun-Xian Zhang ◽  
Yong-Shui Zhou

Present simulation results based on two-dimensional basin cannot obtain accurate evaluations of petroleum resources because of not combining the thermal history in the Dongpu Depression. In this paper, Shahejie 3 Formation source rocks are evaluated using the geochemical data, and based on the thermal history, the thermal maturity evolution of typical wells and the top and bottom of the Shahejie 3 Formation source rocks are modeled using BasinMod software. Results show that source rocks are mainly distributed in the Haitongji-Liutun and Qianliyuan areas, and dominated by medium to high maturity source rocks. Organic matter types are primarily types II and III kerogen with a small amount of type I. The Shahejie 3 Formation source rocks in the Menggangji area experienced two stages of hydrocarbon generation: (1) during the Dongying Formation depositional period (33–17 Ma) and (2) from the Minghuazhen Formation depositional period to present (5.1–0 Ma). The source rocks are generally underdeveloped with low potential for hydrocarbon generation due to nonpoor and thin source rocks in this area. The two stages of hydrocarbon generation are not obvious for other areas. When the bottom of the source rocks reached overmature stage, the mid-lower Shahejie 3 Formation experienced the peak of hydrocarbon generation during the Dongying Formation depositional period. The thermal maturity evolution of the Shahejie 3 Formation source rocks revealed that the main hydrocarbon generation period was during the Dongying Formation depositional period. Therefore, petroleum exploration is suggested to be performed at the Shahejie 3 Formation source rocks in the Qianliyuan and Haitongji-Liutun areas to study the lithology and discover complex petroleum reservoirs in the Dongpu Depression.


2020 ◽  
Vol 12 (1) ◽  
pp. 990-1002
Author(s):  
Shouliang Sun ◽  
Tao Zhang ◽  
Yongfei Li ◽  
Shuwang Chen ◽  
Qiushi Sun

AbstractMesozoic intrusive bodies play an important role in the temperature history and hydrocarbon maturation of the Jinyang Basin in northeastern China. The Beipiao Formation, which is the main source rock in Jinyang Basin, was intruded by numerous igneous bodies and dykes in many areas. The effects of igneous intrusive bodies on thermal evolution and hydrocarbon generation and migration in the Beipiao Formation were investigated. A series of samples from the outcrop near the intrusive body were analyzed for vitrinite reflectance (R0%) and other organic geochemical parameters to evaluate the lateral extension of the thermal aureole. The R0 values of the samples increase from a background value of ∼0.9% at a distance above 200 m from the intrusive body to more than 2.0% at the vicinity of the contact zone. The width of the altered zone is equal to the thickness of the intrusive body outcropped in the field. Organic geochemical proxies also indicate the intrusive body plays a positive and beneficial role in the formation of regional oil and gas resources. Due to the influence of the anomalous heat from the intrusive body, the hydrocarbon conversion rate of the source rocks of the Beipiao Formation was significantly improved. The accumulation properties and the storage capacity of the shales also greatly improved due to the intrusive body as indicated by the free hydrocarbon migration in the shales. This new understanding not only provides a reliable scientific basis for the accurate assessment of oil and gas genesis and resources in the Jinyang Basin but also provides guidance and reference for oil and gas exploration in the similar type of basin.


2015 ◽  
Author(s):  
Jamal A. Madi ◽  
Elhadi M. Belhadj

Abstract Oman's petroleum systems are related to four known source rocks: the Precambrian-Lower Cambrian Huqf, the Lower Silurian Sahmah, the Late Jurassic Shuaiba-Tuwaiq and the Cretaceous Natih. The Huqf and the Natih have sourced almost all the discovered fields in the country. This study examines the shale-gas and shale-oil potential of the Lower Silurian Sahmah in the Omani side of the Rub al Khali basin along the Saudi border. The prospective area exceeds 12,000 square miles (31,300 km2). The Silurian hot shale at the base of the Sahmah shale is equivalent to the known world-class source rock, widespread throughout North Africa (Tannezouft) and the Arabian Peninsula (Sahmah/Qusaiba). Both thickness and thermal maturities increase northward toward Saudi Arabia, with an apparent depocentre extending southward into Oman Block 36 where the hot shale is up to 55 m thick and reached 1.4% vitrinite reflectance (in Burkanah-1 and ATA-1 wells). The present-day measured TOC and estimated from log signatures range from 0.8 to 9%. 1D thermal modeling and burial history of the Sahmah source rock in some wells indicate that, depending on the used kinetics, hydrocarbon generation/expulsion began from the Early Jurassic (ca 160 M.a.b.p) to Cretaceous. Shale oil/gas resource density estimates, particularly in countries and plays outside North America remain highly uncertain, due to the lack of geochemical data, the lack of history of shale oil/gas production, and the valuation method undertaken. Based on available geological and geochemical data, we applied both Jarvie (2007) and Talukdar (2010) methods for the resource estimation of: (1) the amount of hydrocarbon generated and expelled into conventional reservoirs and (2) the amount of hydrocarbon retained within the Silurian hot shale. Preliminary results show that the hydrocarbon potential is distributed equally between wet natural gas and oil within an area of 11,000 square mile. The Silurian Sahmah shale has generated and expelled (and/or partly lost) about 116.8 billion of oil and 275.6 TCF of gas. Likewise, our estimates indicate that 56 billion of oil and 273.4 TCF of gas are potentially retained within the Sahmah source rock, making this interval a future unconventional resource play. The average calculated retained oil and gas yields are estimated to be 6 MMbbl/mi2 (or 117 bbl oil/ac-ft) and 25.3 bcf/mi2 (or 403 mcf gas/ac-ft) respectively. To better compare our estimates with Advanced Resources International (EIA/ARI) studies on several Silurian shale plays, we also carried out estimates based on the volumetric method. The total oil in-place is 50.2 billion barrels, while the total gas in-place is 107.6 TCF. The average oil and gas yield is respectively 7 MMbbl/mi2 and 15.5 bcf/mi2. Our findings, in term of oil and gas concentration, are in line or often smaller than all the shale oil/gas plays assessed by EIA/ARI and others.


2020 ◽  
Vol 10 (4) ◽  
pp. 95-120
Author(s):  
Rzger Abdulkarim Abdula

Burial history, thermal maturity, and timing of hydrocarbon generation were modeled for five key source-rock horizons at five locations in Northern Iraq. Constructed burial-history locations from east to west in the region are: Taq Taq-1; Qara Chugh-2; Zab-1; Guwair-2; and Shaikhan-2 wells. Generally, the thermal maturity status of the burial history sites based on increasing thermal maturity is Shaikhan-2 < Zab-1 < Guwair-2 < Qara Chugh-2 < Taq Taq-1. In well Qara Chugh-2, oil generation from Type-IIS kerogen in Geli Khana Formation started in the Late Cretaceous. Gas generation occurred at Qara Chugh-2 from Geli Khana Formation in the Late Miocene. The Kurra Chine Formation entered oil generation window at Guwair-2 and Shaikhan-2 at 64 Ma and 46 Ma, respectively. At Zab-1, the Baluti Formation started to generate gas at 120 Ma. The Butmah /Sarki reached peak oil generation at 45 Ma at Taq Taq-1. The main source rock in the area, Sargelu Formation started to generate oil at 47, 51, 33, 28, and 28 Ma at Taq Taq-1, Guwair-2, Shaikhan-2, Qara Chugh-2, and Zab-1, respectively. The results of the models demonstrated that peak petroleum generation from the Jurassic oil- and gas-prone source rocks in the most profound parts of the studied area occurred from Late Cretaceous to Middle Oligocene. At all localities, the Sargelu Formation is still within the oil window apart from Taq Taq-1 and Qara Chugh-2 where it is in the oil cracking and gas generation phase.


Sign in / Sign up

Export Citation Format

Share Document