THE OFFSHORE CARPENTARIA BASIN-GULF OF CARPENTARIA, NORTH QUEENSLAND

1994 ◽  
Vol 34 (1) ◽  
pp. 614
Author(s):  
B.A. McConachie ◽  
P.W. Stainton ◽  
M.G. Barlow ◽  
J.N. Dunster

The Carpentaria Basin is late Jurassic to early Cretaceous in age and underlies most of the Gulf of Carpentaria and surrounding onshore areas. The Carpentaria Basin is stratigraphically equivalent to the Eromanga and Papuan Basins where similar reservoir rocks produce large volumes of hydrocarbons.Drillholes Duyken–1, Jackie Ck–1 and 307RD12 provide regional lithostratigraphic and tectonic control for the Q22P permit in the offshore Carpentaria Basin. Duyken–1 penetrated the upper seal section in the Carpentaria Basin and a full sequence through the overlying Karumba Basin. Jackin Ck–1 intersected the lower reservoir units and a condensed upper seal section of the Carpentaria Basin. Coal drillhole 307RD12 tested the late Jurassic to early Cretaceous reservoir section in the Carpentaria Basin and also intersected an underlying Permian infrabasin sequence.Little is known of the pre Jurassic sedimentary section below the offshore Carpentaria Basin but at least two different rock packages appear to be present. The most encouraging are relatively small, layered, low velocity, channel and half-graben fill, possibly related to Permian or Permo-Triassic sedimentary rocks to the east in the Olive River area. The other packages consist of poorly defined, discontinuous, high velocity rocks believed to be related to those of the Bamaga Basin which have been mapped further north.During the period 1990-1993 Comalco Aluminium Limited reprocessed 2188 km of existing seismic data and acquired 2657 km of new seismic data over the offshore Carpentaria Basin. When combined with onshore seismic and the results of drilling previously undertaken by Comalco near Weipa on northwestern Cape York Peninsula, it was possible to define a significant and untested play in the Carpentaria Depression, the deepest part of the offshore Carpentaria Basin.The main play in the basin is the late Jurassic to early Cretaceous reservoir sandstones and source rocks, sealed by thick early Cretaceous mudstones. Possible pre-Jurassic source rocks are also present in discontinuous fault controlled half-grabens underlying the Carpentaria Basin. New detailed basin modelling suggests both the lower part of the Carpentaria Basin and any pre Jurassic section are mature within the depression and any source rocks present should have expelled oil.

1995 ◽  
Vol 35 (1) ◽  
pp. 358 ◽  
Author(s):  
R. Lovibond ◽  
R.J. Suttill ◽  
J.E. Skinner ◽  
A.N. Aburas

The Penola Trough is an elongate, Late Jurassic to Early Cretaceous, NW-SE trending half graben filled mainly with synrift sediments of the Crayfish Group. Katnook-1 discovered gas in the basal Eumeralla Formation, but all commercial discoveries have been within the Crayfish Group, particularly the Pretty Hill Formation. Recent improvements in seismic data quality, in conjunction with additional well control, have greatly improved the understanding of the stratigraphy, structure and hydrocarbon prospectivity of the trough. Strati-graphic units within the Pretty Hill Formation are now mappable seismically. The maturity of potential source rocks within these deeper units has been modelled, and the distribution and quality of potential reservoir sands at several levels within the Crayfish Group have been studied using both well and seismic data. Evaluation of the structural history of the trough, the risk of a late carbon dioxide charge to traps, the direct detection of gas using seismic AVO analysis, and the petrophysical ambiguities recorded in wells has resulted in new insights. An important new play has been recognised on the northern flank of the Penola Trough: a gas and oil charge from mature source rocks directly overlying basement into a quartzose sand sequence referred to informally as the Sawpit Sandstone. This play was successfully tested in early 1994 by Wynn-1 which flowed both oil and gas during testing from the Sawpit Sandstone. In mid 1994, Haselgrove-1 discovered commercial quantities of gas in a tilted Pretty Hill Formation fault block adjacent to the Katnook Field. These recent discoveries enhance the prospectivity of the Penola Trough and of the Early Cretaceous sequence in the wider Otway Basin where these sediments are within reach of the drill.


1978 ◽  
Vol 18 (1) ◽  
pp. 34 ◽  
Author(s):  
H. M. J. Stagg

The Scott Plateau and the adjacent Rowley Terrace cover about 130,000 km2 beyond Australia's Northwest Shelf in water depths ranging from 300 m to 3000 m. The regional geology and structural evolution of the area have been interpreted from about 13,000 km of seismic reflection profiles.The Scott Plateau forms a subsided oceanward margin to the Browse Basin. For much of the period from the Carboniferous to the Middle Jurassic, preceding the breakup which formed this part of the continental margin, the Scott Plateau was probably above sea level shedding sediment into the developing Browse Basin. After breakup in the Bathonian to Callovian, the plateau subsided, until by the Late Cretaceous open marine conditions were prevalent over most of the area, with the probable exception of some structurally high areas which may have remained emergent until early in the Tertiary. Carbonate sedimentation commenced in the Santonian and has continued to the present, with major hiatuses in the Paleocene and Oligocene. Analysis of magnetic and seismic data indicates that, over much of the plateau, economic basement of possible Kimberley Block equivalents is probably no more than 3 to 4 km below sea bed. To the south of the Scott Plateau, the Rowley Terrace is underlain by a wedge of at least 6 km of Mesozoic and Tertiary sediments of the northeast- trending Rowley Sub - basin. The Rowley Sub -basin connects with the Beagle Sub-basin to the southwest and probably connects with the Browse Basin to the northeast. It has been largely unaffected by episodes of faulting, except in the southwest where faulting and folding are pronounced. The petroleum potential of the Scott Plateau is not rated highly. The potential hydrocarbon-bearing sediments here are probably no younger than Palaeozoic. These are quite likely to be only 2 to 4 km thick, and any hydrocarbons generated within them would probably have been lost during the protracted period of emergence and erosion that preceded breakup. The hydrocarbon potential appears to be greater in the Rowley Sub-basin, where Triassic to Cretaceous shale and siltstone source rocks, and Triassic to Lower Cretaceous sandstone reservoir rocks are expected to be present. However, the potential of these sequences is downgraded because hydrocarbon shows in exploration wells on the adjacent part of the Northwest Shelf have been only minor, and by the apparent scarcity of suitable traps. Exploitation of any hydrocarbons would be costly owing to the great water depths.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
M. Hobiger ◽  
M. Hallo ◽  
C. Schmelzbach ◽  
S. C. Stähler ◽  
D. Fäh ◽  
...  

AbstractOrbital and surface observations can shed light on the internal structure of Mars. NASA’s InSight mission allows mapping the shallow subsurface of Elysium Planitia using seismic data. In this work, we apply a classical seismological technique of inverting Rayleigh wave ellipticity curves extracted from ambient seismic vibrations to resolve, for the first time on Mars, the shallow subsurface to around 200 m depth. While our seismic velocity model is largely consistent with the expected layered subsurface consisting of a thin regolith layer above stacks of lava flows, we find a seismic low-velocity zone at about 30 to 75 m depth that we interpret as a sedimentary layer sandwiched somewhere within the underlying Hesperian and Amazonian aged basalt layers. A prominent amplitude peak observed in the seismic data at 2.4 Hz is interpreted as an Airy phase related to surface wave energy trapped in this local low-velocity channel.


1996 ◽  
Vol 36 (1) ◽  
pp. 477 ◽  
Author(s):  
S. Ryan-Grigor ◽  
C. M. Griffiths

The Early to Middle Cretaceous is characterised worldwide by widespread distribution of dark shales with high gamma ray readings and high organic contents defined as dark coloured mudrocks having the sedimentary, palaeoecological and geochemical characteristics associated with deposition under oxygen-deficient or oxygen-free bottom waters. Factors that contributed to the formation of the Early to Middle Cretaceous 'hot shales' are: rising sea-level, a warm equable climate which promoted water stratification, and large scale palaeogeographic features that restrict free water mixing. In the northern North Sea, the main source rock is the Late Jurassic to Early Cretaceous Kimmeridge Clay/Draupne Formation 'hot shale' which occurs within the Viking Graben, a large fault-bounded graben, in a marine environment with restricted bottom circulation and often anaerobic conditions. Opening of the basin during a major trans-gressive event resulted in flushing, and deposition of normal open marine shales above the 'hot shales'. The Late Callovian to Berriasian sediments in the Dampier Sub-basin are considered to have been deposited in restricted marine conditions below a stratified water column, in a deep narrow bay. Late Jurassic to Early Cretaceous marine sequences that have been cored on the North West Shelf are generally of moderate quality, compared to the high quality source rocks of the northern North Sea, but it should be noted that the cores are from wells on structural highs. The 'hot shales' are not very organic-rich in the northern Dampier Sub-basin and are not yet within the oil window, however seismic data show a possible reduction in velocity to the southwest in the Kendrew Terrace, suggesting that further south in the basin the shales may be within the oil window and may also be richer in organic content. In this case, they may be productive source rocks, analogous to the main source rock of the North Sea.


2000 ◽  
Vol 40 (1) ◽  
pp. 257 ◽  
Author(s):  
J.C. Preston ◽  
D.S. Edwards

Geochemical data from oils and source rock extracts have been used to delineate the active petroleum systems of the Northern Bonaparte Basin. The study area comprises the northeastern portion of the Territory of Ashmore and Cartier Islands, and the western part of the Zone of Co-operation Area A, and is specifically concerned with the wells located on and between the Laminaria and Flamingo highs. The oils and condensates from this region can be divided into two distinct chemical groups which correspond with the reservoir types, namely, a smaller group recovered from fracture porosity within the Early Cretaceous Darwin Formation, and a larger group reservoired in sandstones of the Middle-to-Late Jurassic Plover and Elang formations. The oils recovered from the Darwin Formation have a marine source affinity and correlate with sediment extracts from the underlying Early Cretaceous Echuca Shoals Formation. The Elang/ Plover-reservoired oils, which include all the commercial accumulations, were divided into two end-member families; the first includes the relatively land-plant- influenced oils from the northwestern part of the area (e.g. Laminaria, Corallina, Buffalo and Jahal fields), the second includes the relatively marine-influenced oils to the southeast (e.g. Bayu-Undan fields). Another oil family comprises the geographically and geochemically intermediate oils of the Elang and Kakatua fields and adjacent areas. While none of the oils can be uniquely correlated with a single source unit, they show geochemical similarities with Middle-to-Late Jurassic source rock extracts. Organic-rich rocks within the Plover and Elang formations are the major source of hydrocarbons for this area. The range in geochemistry of the Elang/Plover-reservoired oils may arise from facies variation within these sediments, but is more probably due to the localised additional input of hydrocarbons generated from thermally mature organic-rich claystone seals that overlie the Elang reservoir in catchment areas and traps; i.e. from the Frigate Formation for the northwestern oil family and from the Flamingo Group for the southeastern oil family. The short-range migration patterns dictated by the structural complexity of the basin are reflected in the closeness with which variations in the geochemical character of the accumulated liquids track variations in the character of source-seal lithologies. The length of migration pathways can, therefore, be inferred from the similarity or otherwise of source-seal characters with those of the hydrocarbon accumulations themselves. The resulting observations may challenge existing ideas concerning migration patterns, hydrocarbon prospectivity and prospect risking within the Northern Bonaparte Basin.


2004 ◽  
Vol 44 (1) ◽  
pp. 13 ◽  
Author(s):  
J.D. Gorter ◽  
D.J. Hearty ◽  
A.J. Bond

The under-explored Houtman Sub-basin, a northwestern offshore extension of the hydrocarbon-productive Perth Basin of southwestern Australia, formed during Jurassic rifting of Gondwana. The sub-basin contains the ingredients for an exciting frontier petroleum province with typical rift architecture. Permian, Triassic and Jurassic petroleum systems are proven from the onshore region, with a productive Triassic-sourced hydrocarbon system recently demonstrated in the adjacent Abrolhos Sub-basin by the Cliff Head oil discovery, and several basal Triassic-sourced oil shows. Gas and oil shows from the Early to Middle Jurassic Cattamarra Coal Measures in Houtman–1, the only well drilled in the 32,000 km2 Houtman Sub-basin, are most likely sourced from the organic-rich Cattamarra Coal Measures and are sealed by intraformational shales and the overlying regional marine shale of the Cadda Formation. The disappointing result of Houtman–1 has coloured perceptions of the prospectivity of the Houtman Sub-basin. Despite this negativity, recent seismic acquisition and reprocessing have demonstrated the presence of large structural closures in the sub-basin that could contain substantial oil reserves as indicated by geochemical modelling of the Cattamarra Coal Measures source rocks. Analyses on GOI indicate a palaeo-oil zone at the top of the Cattamarra Coal Measures in Houtman–1 indicating that the gas-prone perception may not be true. QGF intensities from Houtman–1 suggest oil migration in sandstones beneath intra-formational seals in both the Late Jurassic Yarragadee Formation and the Cattamarra Coal Measures. In addition to reservoir sandstones, source rock intervals occur in the lower Yarragadee Formation, but regional sealing units in this formation are to be confirmed.


2021 ◽  
pp. M57-2018-19
Author(s):  
Alf Eivind Ryseth ◽  
Dominique Similox-Tohon ◽  
Olaf Thieβen

AbstractThe Tromsø - Bjørnøya composite tectono-sedimentary element in the southwestern Barents Sea comprises strata of Late Paleozoic - Paleocene age. Since the Paleozoic Caledonian orogeny, the structural evolution of the CTSE is mainly related to extension, culminating in Late Jurassic - Early Cretaceous hyperextension. Some compressive deformation observed during Late Cretaceous - Paleogene times may relate to activity in the North Atlantic prior to the Early Eocene onset of sea floor spreading between Norway and Greenland.The sedimentary succession may be up to 14 km thick. It comprises Late Paleozoic continental facies, followed by carbonates, evaporites and eventually cherts and marine clastic material. The overlying Triassic - Paleocene succession is entirely siliciclastic, reflecting Triassic - Middle Jurassic deltaic and shallow marine conditions followed by deeper marine conditions during Late Jurassic - Paleocene times.Primary reservoirs are encountered in the latest Triassic - Middle Jurassic succession, with secondary reservoirs found in Late Jurassic - Early Cretaceous syn-rift succession, and in Paleocene strata. The primary source rock for petroleum is of Late Jurassic - Early Cretaceous age. Other source rocks include strata of Triassic and Barremian age, and a recently observed unit of Cenomanian - Early Turonian age.


2021 ◽  
pp. M57-2016-28
Author(s):  
Nicolas Pinet ◽  
Denis Lavoie ◽  
Shunxin Zhang

AbstractThe Hudson Strait Platform and basins Tectono-Sedimentary Element (HSPB TSE) is part of a major topographical feature that connects Hudson Bay and Foxe Basin with the Labrador Sea in the Canadian Arctic. The Paleozoic succession (Ordovician–Silurian) unconformably overlies the Precambrian basement and reaches a maximum preserved thickness of less than 600 m on the islands. High-resolution marine seismic data indicate that the offshore part of the Hudson Strait is underlain by several fault-controlled sub-basins with a half-graben geometry. The sedimentary succession in the sub-basins is thicker than the one preserved in nearby islands, and includes an upper sedimentary package for which the nature and age remain poorly constrained. Upper Ordovician source rocks have been mapped onshore. Known potential reservoir rocks consist of Ordovician clastics and Ordovician–Silurian reefs and dolostones.


2016 ◽  
Vol 53 (12) ◽  
pp. 1484-1500 ◽  
Author(s):  
Keith Dewing ◽  
Virginia Brake ◽  
Mathieu J. Duchesne ◽  
Thomas A. Brent ◽  
Nancy Joyce

Modern processing methods were applied to 3400 line-kilometres of legacy seismic data from Sabine Peninsula of Melville Island in the Canadian Arctic Islands. Post-stack reprocessing improved the imaging, allowing new insight into the following issues: the northern extent of lower Paleozoic source rocks, extensional structures and rock types in the upper Paleozoic succession, the timing of the gentle Drake Point Anticline; and the age and extent of igneous sills. The central part of Sabine Peninsula is underlain by a half-graben containing upper Paleozoic strata. The half-graben fill is intersected by just one well, but it likely contains Upper Carboniferous to Lower Permian strata. The two largest conventional gas fields in Canada (Drake Point and Hecla) are hosted in Mesozoic strata within a gentle anticline that partially overlies the half-graben. Previously, the Drake Point Anticline was interpreted to have been formed during Eocene time. We propose that 280 m of the 430 m of structural relief on the Drake Anticline formed in response to uplift at the axis of the anticline in the Early Cretaceous, as shown by thinning of the Lower Cretaceous Christopher Formation over the Drake Anticline. The remaining 150 m of structural relief formed by differential movement between the Marryatt Point Syncline and Drake Point Anticline after the Early Cretaceous. Early Cretaceous relief on the Drake Point Anticline means it was at least partially present at the time of maximum hydrocarbon generation in the Late Cretaceous.


Sign in / Sign up

Export Citation Format

Share Document