FOCUSSING EXPLORATION IN THE OTWAY BASIN: UNDERSTANDING TIMING OF SOURCE ROCK MATURATION

1997 ◽  
Vol 37 (1) ◽  
pp. 178 ◽  
Author(s):  
I.R. Duddy

Quantitative reconstruction of the thermal and structural histories at key locations in the Otway Basin using an integrated approach based on AFTA® and vitrinite reflectance data reveals a regional pattern of elevated geothermal gradient prior to mid-Cretaceous cooling. Paleogeothermal gradients declined from −50 to 70°C/ km at −95 Ma to present day levels in the range −30 to 40°C/km by around 80 Ma. As a result, significant hydrocarbon generation must have occurred from the thick Late Jurassic to Early Cretaceous Otway Group section during the rapid rift-burial phase that preceded major mid-Cretaceous cooling.Regional decline in geothermal gradient in the Late Cretaceous leads to a 'two-stage' generation history for Otway Group source rocks because subsequent hydrocarbon generation did not recommence until the early maturation effects were overcome by greater Late Cretaceous and Tertiary burial. Such early, high heat flow is regarded as a feature of rift basins, and this results in an inverted pattern of hydrocarbon generation from rift source rocks that is here referred to as 'top-down generation', and which has a key influence on hydrocarbon prospectivity.Analysis of key hydrocarbon discoveries in the basin leads to the conclusion that all significant accumulations can reasonably be inferred to be sourced from the Otway Group, due to 'top-down generation5 delayed until the mid-Tertiary to present-day burial phase. This situation clearly favours hydrocarbon preservation in traps of a range of ages and has the added advantage of limiting the time available for traps to be breached in subsequent structuring episodes.This understanding of the decoupled relationship between the burial and thermal histories provides a sharp focus for further exploration of Otway Group-sourced accumulations, by defining areas with suitable thicknesses of the Late Cretaceous and Tertiary depositional packages which maximise the amount of re-generation since the mid-Tertiary.

1997 ◽  
Vol 37 (1) ◽  
pp. 505 ◽  
Author(s):  
M.M. Mitchell

The Otway Basin formed during the Mesozoic separation of Antarctica and Australia. A study of apatite fission track (FT) analysis and vitrinite reflectance (VR) data from borehole samples in the western Otway Basin was initiated to elucidate some of the thermal and structural complexities of this region.Interpretation of results suggest that some areas experienced regionally elevated palaeotemperatures, however, much of the region is at present-day maximum temperatures. Where cooling from maximum palaeotemperatures is observed, the timing may be grouped over three main intervals as follows; mid-Cretaceous, Late Cretaceous to Early Tertiary, and Tertiary. Cooling was facilitated by a decline in geothermal gradient, uplift and erosion, or both. Evidence for a decline in geothermal gradient from values >55°C/km in the mid- Cretaceous is recognised in several wells. Elevated mid- Cretaceous palaeogeothermal gradients (50−60°C/km) have been reported for the eastern Otway Basin, suggesting that these high temperatures were a regional phenomena. Cooling by uplift and erosion at this time was minimal throughout the western Otway Basin in contrast to the kilometre scale uplift and erosion reported for the eastern Otway Basin and adjacent basement inland of this section of the rift.The relative early maturation of the Otway Supergroup during mid-Cretaceous regionally elevated geothermal gradients, and subsequent basin restructuring, are key factors affecting hydrocarbon preservation in the western Otway Basin. Strategies for identification of prospective areas include identification of regions that have remained at moderate temperatures during the Early Cretaceous, and have not undergone burial under a thick Upper Cretaceous to Tertiary section.


2003 ◽  
Vol 43 (1) ◽  
pp. 59 ◽  
Author(s):  
I.R. Duddy ◽  
B. Erout ◽  
P.F. Green ◽  
P.V. Crowhurst ◽  
P.J. Boult

Reconstructed thermal and structural histories derived from new AFTA Apatite Fission Track Analysis, vitrinite reflectance and (U-Th)/He apatite dating results from the Morum–1 well, Otway Basin, reveal that the Morum High is a mid-Tertiary inversion structure. Uplift and erosion commencing in the Late Paleocene to mid-Eocene (57–40 Ma) removed around 1,500 m of sedimentary section. The eroded section is attributed to the Paleocene- Eocene Wangerrip Group which is considered to have been deposited in a major depocentre in the vicinity of the present Morum High. This depocentre is interpreted to have been one of a number of transtensional basins developed at the margin of the Morum Sub-basin and adjacent to the Tartwaup Hinge Zone and Mussel Fault during the Early Tertiary. The Portland Trough in Victoria represents a similar depocentre in which over 1,500 m of Wangerrip Group section, mostly represented by deltaic sediments of the Early Eocene Dilwyn Formation, is still preserved.Quantification of the maximum paleotemperature profile in Morum–1 immediately prior to Late Paleocene to mid-Eocene inversion shows that the paleo-geothemal gradient at the time was between 21 and 31°C/km, similar to the present-day level of 29°C/km, demonstrating that there has been little change in basal heat flow since the Early Tertiary.Reconstruction of the thermal history at the Trumpet–1 location reveals no evidence for any periods of significant uplift and erosion, demonstrating the relative stability of this part of the Crayfish Platform since the Late Cretaceous.The thermal and burial histories at Morum–1 and Trumpet–1 have been used to calibrate a Temis2D hydrocarbon generation and migration model along seismic line 85-13, encompassing the Crayfish Platform, Morum High and Morum Sub-basin. The model shows the cessation of active hydrocarbon generation from Eumeralla Formation source rocks around the Morum High due to cooling at 45 Ma (within the range 57–40 Ma) resulting from uplift and erosion of a Wangerrip Group basin. There has been almost no hydrocarbon generation from the Eumeralla Formation beneath the Crayfish Platform.Migration of hydrocarbons generated from the Eumeralla Formation began in the Late Cretaceous in the Morum Sub-basin and is predicted to continue to the present day, with the potential for accumulations in suitably placed reservoirs within the Late Cretaceous package both within the Morum Sub-basin and at the southern margin of the Crayfish Platform.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Haiping Huang ◽  
Hong Zhang ◽  
Zheng Li ◽  
Mei Liu

To the accurate reconstruction of the hydrocarbon generation history in the Dongying Depression, Bohai Bay Basin, East China, core samples of the Eocene Shahejie Formation from 3 shale oil boreholes were analyzed using organic petrology and organic geochemistry methods. The shales are enriched in organic matter with good to excellent hydrocarbon generation potential. The maturity indicated by measured vitrinite reflectance (%Ro) falls in the range of 0.5–0.9% and increases with burial depth in each well. Changes in biomarker and aromatic hydrocarbon isomer distributions and biomarker concentrations are also unequivocally correlated with the thermal maturity of the source rocks. Maturity/depth relationships for hopanes, steranes, and aromatic hydrocarbons, constructed from core data indicate different well locations, have different thermal regimes. A systematic variability of maturity with geographical position along the depression has been illustrated, which is a dependence on the distance to the Tanlu Fault. Higher thermal gradient at the southern side of the Dongying Depression results in the same maturity level at shallower depth compared to the northern side. The significant regional thermal regime change from south to north in the Dongying Depression may exert an important impact on the timing of hydrocarbon maturation and expulsion at different locations. Different exploration strategies should be employed accordingly.


1982 ◽  
Vol 22 (1) ◽  
pp. 5
Author(s):  
A. R. Martin ◽  
J. D. Saxby

The geology and exploration history of the Triassic-Cretaceous Clarence-Moreton Basin are reviewed. Consideration of new geochemical data ('Rock-Eval', vitrinite reflectance, gas chromatography of extracts, organic carbon and elemental analysis of coals and kerogens) gives further insights into the hydrocarbon potential of the basin. Although organic-rich rocks are relatively abundant, most source rocks that have achieved the levels of maturation necessary for hydrocarbon generation are gas-prone. The exinite-rich oil-prone Walloon Coal Measures are in most parts relatively immature. Some restraints on migration pathways are evident and igneous and tectonic events may have disturbed potentially well-sealed traps. Further exploration is warranted, even though the basin appears gas-prone and the overall prospects for hydrocarbons are only fair. The most promising areas seem to be west of Toowoomba for oil and the Clarence Syncline for gas.


1981 ◽  
Vol 21 (1) ◽  
pp. 187
Author(s):  
M. Smyth ◽  
J. D. Saxby

Sediments from the Permian Pedirka Basin and the overlying Triassic Simpson Desert Basin have been studied to determine their potentials as source rocks for hydrocarbons. Principal techniques used are reflected light microscopy, including vitrinite reflectance, solvent extraction and kerogen isolation.Dispersed organic matter (DOM) occurs through the Permian and Triassic sequences, and is most abundant near the top of the Triassic, constituting up to 2 per cent of the sediments by volume. Of this DOM, 30 to 50 per cent is vitrinite plus exinite. The Permian and Triassic coals have vitrinite reflectivities of up to 0.9 per cent. The geothermal gradient in the vicinity of Poolowanna 1 is probably sufficient to cause the cutinite within the Triassic sediments to break down into petroleum hydrocarbons. In the case of the Poolowanna Jurassic oil show, migration up faults and accumulation in high-temperature reservoirs have been accompanied by the loss of volatile hydrocarbons.


1978 ◽  
Vol 18 (1) ◽  
pp. 143 ◽  
Author(s):  
A.J Kantsler ◽  
G. C. Smith ◽  
A. C. Cook

Vitrinite reflectance measurements are used to determine the vertical and lateral patterns of rank variation within four Australian sedimentary basins. They are also used to estimate palaeotemperatures which, in conjunction with present well temperatures, allow an appraisal of the timing of coalification and of hydrocarbon generation and distribution.The Canning Basin has a pattern of significant pre-Jurassic coalification which was interrupted by widespread uplift and erosion in the Triassic. Mesozoic and Tertiary coalification is generally weak, resulting in a pattern of rank distribution unfavourable to oil occurrence but indicating some potential for gas. The Cooper Basin also has a depositional break in the Triassic, but the post-Triassic coalification is much more significant than in the Canning Basin. The major gas fields are in, or peripheral to, areas which underwent strong, early, telemagmatic coalification whereas the oil-prone Tirrawarra area is characterized by a marked rise in temperature in the late Tertiary. The deeper parts of the Bass Basin underwent early coalification and are in the zone of oil generation, while most of the remaining area is immature. Inshore areas of the Gippsland Basin are also characterized by early coalification. Areas which are further offshore are less affected by this phase of early maturation, but underwent rapid burial and a sharp rise in temperature in the late Tertiary.


1983 ◽  
Vol 23 (1) ◽  
pp. 75 ◽  
Author(s):  
A. J. Kantsler ◽  
T. J. C. Prudence ◽  
A. C. Cook ◽  
M. Zwigulis

The Cooper Basin is a complex intracratonic basin containing a Permian-Triassic succession which is uncomformably overlain by Jurassic-Cretaceous sediments of the Eromanga Basin. Abundant inertinite-rich humic source rocks in the Permian coal measures sequence have sourced some 3TCF recoverable gas and 300 million barrels recoverable natural gas liquids and oil found to date in Permian sandstones. Locally developed vitrinitic and exinite-rich humic source rocks in the Jurassic to Lower Cretaceous section have, together with Permian source rocks, contributed to a further 60 million barrels of recoverable oil found in fluvial Jurassic-Cretaceous sandstones.Maturity trends vary across the basin in response to a complex thermal history, resulting in a present-day geothermal gradient which ranges from 3.0°C/100 m to 6.0°C/100 m. Permian source rocks are generally mature to postmature for oil generation, and oil/condensate-prone and dry gas-prone kitchens exist in separate depositional troughs. Jurassic source rocks generally range from immature to mature but are postmature in the central Nappamerri Trough. The Nappamerri Trough is considered to have been the most prolific Jurassic oil kitchen because of the mature character of the crudes found in Jurassic reservoirs around its flanks.Outside the central Nappamerri Trough, maturation modelling studies show that most hydrocarbon generation followed rapid subsidence during the Cenomanian. Most syndepositional Permian structures are favourably located in time and space to receive this hydrocarbon charge. Late formed structures (Mid-Late Tertiary) are less favourably situated and are rarely filled to spill point.The high CO2 contents of the Permian gas (up to 50 percent) may be related to maturation of the humic Permian source rocks and thermal degradation of Permian crudes. However, the high δ13C of the CO2 (av. −6.9 percent) suggests some mixing with CO2 derived from thermal breakdown of carbonates within both the prospective sequence and economic basement.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 650 ◽  
Author(s):  
Jinliang Zhang ◽  
Jiaqi Guo ◽  
Jinshui Liu ◽  
Wenlong Shen ◽  
Na Li ◽  
...  

The Lishui Sag is located in the southeastern part of the Taibei Depression, in the East China Sea basin, where the sag is the major hydrocarbon accumulation zone. A three dimensional modelling approach was used to estimate the mass of petroleum generation and accumulated during the evolution of the basin. Calibration of the model, based on measured maturity (vitrinite reflectance) and borehole temperatures, took into consideration two main periods of erosion events: a late Cretaceous to early Paleocene event, and an Oligocene erosion event. The maturation histories of the main source rock formations were reconstructed and show that the peak maturities have been reached in the west central part of the basin. Our study included source rock analysis, measurement of fluid inclusion homogenization temperatures, and basin history modelling to define the source rock properties, the thermal evolution and hydrocarbon generation history, and possible hydrocarbon accumulation processes in the Lishui Sag. The study found that the main hydrocarbon source for the Lishui Sag are argillaceous source rocks in the Yueguifeng Formation. The hydrocarbon generation period lasted from 58 Ma to 32 Ma. The first period of hydrocarbon accumulation lasted from 51.8 Ma to 32 Ma, and the second period lasted from 23 Ma to the present. The accumulation zones mainly located in the structural high and lithologic-fault screened reservoir filling with the hydrocarbon migrated from the deep sag in the south west direction.


2020 ◽  
Vol 17 (6) ◽  
pp. 1540-1555
Author(s):  
Jin-Jun Xu ◽  
Qiang Jin

AbstractNatural gas and condensate derived from Carboniferous-Permian (C-P) coaly source rocks discovered in the Dagang Oilfield in the Bohai Bay Basin (east China) have important implications for the potential exploration of C-P coaly source rocks. This study analyzed the secondary, tertiary, and dynamic characteristics of hydrocarbon generation in order to predict the hydrocarbon potentials of different exploration areas in the Dagang Oilfield. The results indicated that C-P oil and gas were generated from coaly source rocks by secondary or tertiary hydrocarbon generation and characterized by notably different hydrocarbon products and generation dynamics. Secondary hydrocarbon generation was completed when the maturity reached vitrinite reflectance (Ro) of 0.7%–0.9% before uplift prior to the Eocene. Tertiary hydrocarbon generation from the source rocks was limited in deep buried sags in the Oligocene, where the products consisted of light oil and gas. The activation energies for secondary and tertiary hydrocarbon generation were 260–280 kJ/mol and 300–330 kJ/mol, respectively, indicating that each instance of hydrocarbon generation required higher temperature or deeper burial than the previous instance. Locations with secondary or tertiary hydrocarbon generation from C-P coaly source rocks were interpreted as potential oil and gas exploration regions.


2012 ◽  
Vol 63 (4) ◽  
pp. 335-342 ◽  
Author(s):  
Paweł Kosakowski ◽  
Magdalena Wróbel

Burial history, thermal history and hydrocarbon generation modelling of the Jurassic source rocks in the basement of the Polish Carpathian Foredeep and Outer Carpathians (SE Poland)Burial history, thermal maturity, and timing of hydrocarbon generation were modelled for the Jurassic source rocks in the basement of the Carpathian Foredeep and marginal part of the Outer Carpathians. The area of investigation was bounded to the west by Kraków, to the east by Rzeszów. The modelling was carried out in profiles of wells: Będzienica 2, Dębica 10K, Góra Ropczycka 1K, Goleszów 5, Nawsie 1, Pławowice E1 and Pilzno 40. The organic matter, containing gas-prone Type III kerogen with an admixture of Type II kerogen, is immature or at most, early mature to 0.7 % in the vitrinite reflectance scale. The highest thermal maturity is recorded in the south-eastern part of the study area, where the Jurassic strata are buried deeper. The thermal modelling showed that the obtained organic matter maturity in the initial phase of the "oil window" is connected with the stage of the Carpathian overthrusting. The numerical modelling indicated that the onset of hydrocarbon generation from the Middle Jurassic source rocks was also connected with the Carpathian thrust belt. The peak of hydrocarbon generation took place in the orogenic stage of the overthrusting. The amount of generated hydrocarbons is generally small, which is a consequence of the low maturity and low transformation degree of kerogen. The generated hydrocarbons were not expelled from their source rock. An analysis of maturity distribution and transformation degree of the Jurassic organic matter shows that the best conditions for hydrocarbon generation occurred most probably in areas deeply buried under the Outer Carpathians. It is most probable that the "generation kitchen" should be searched for there.


Sign in / Sign up

Export Citation Format

Share Document