A NEW SEQUENCE FRAMEWORK FORTHE GREAT AUSTRALIAN BIGHT: STARTING WITH A CLEAN SLATE

2000 ◽  
Vol 40 (1) ◽  
pp. 95 ◽  
Author(s):  
J.M. Totterdell ◽  
J.E. Blevin ◽  
H.I.M. Struckmeyer ◽  
B.E. Bradshaw ◽  
J.B. Colwell ◽  
...  

The 1999 release of offshore petroleum exploration acreage in the Great Australian Bight and the acquisition of high quality seismic datasets covering the Bight and Duntroon Basins, have provided a timely opportunity to reassess the stratigraphic and tectonic evolution of the area. A sequence stratigraphic framework for the Great Australian Bight region has been developed based on the interpretation of exploration wells in the Bight and Duntroon basins and a grid of new and reprocessed seismic data in the Bight Basin. Previous formation-based nomenclature has emphasised lithostratigraphic correlations rather than the chronostratigraphic relationships. The new sequence framework underpins an analysis of play elements and petroleum systems and is helping to identify new exploration opportunities.Deposition in the Bight and Duntroon Basins commenced in the Late Jurassic during a period of lithospheric extension. Extensive half graben systems were filled with fluvial and lacustrine clastic sediments (Sea Lion and Minke supersequences). Potential source rocks within these supersequences are immature at Jerboa-1 in the Eyre Sub-basin, however higher maturities are expected within adjacent half graben and in the Ceduna and Recherche Sub-basins. The syn-rift successions are overlain by widespread Berriasian to Albian fluvio-lacustrine to marine sediments of the Southern Right and Bronze Whaler supersequences. The onlapping sag-fill geometry of these Early Cretaceous packages in the Eyre, Ceduna and inner Recherche Sub-basins suggests that they were deposited during a period of thermal subsidence.Accelerated subsidence commencing in the late Albian led to the deposition of the marine shales of the Blue Whale supersequence, followed by a period of gravity-controlled faulting and deformation in the Cenomanian. The White Pointer supersequence is characterised by growth strata associated with a series of listric faults that sole out in underlying ductile shales of the Blue Whale supersequence. Open marine conditions during the Turonian-Santonian (Tiger supersequence) were followed by the development of massive shelf margin delta complexes in the late Santonian-Maastrichtian (Hammerhead supersequence). The progradational to aggradational stratal geometries within the Hammerhead supersequence suggest initial high rates of sediment input that subsequently waned during this period. An overall transgressive phase of sedimentation in the Early Tertiary (Wobbegong supersequence) was followed by the establishment of open marine carbonate shelf conditions from the Early Eocene onward (Dugong supersequence). Organic geochemical studies show that the Bronze Whaler to White Pointer supersequences have good source rock potential in the relatively proximal facies intersected by existing petroleum exploration wells. Our sequence stratigraphic model predicts the likelihood of widespread late Aptian, Albian, Cenomanian-Santonian, and Campanian marine shales, which underpin four potential marine petroleum systems.

2017 ◽  
Vol 57 (2) ◽  
pp. 755 ◽  
Author(s):  
Lisa Hall ◽  
Emmanuelle Grosjean ◽  
Irina Borissova ◽  
Chris Southby ◽  
Ryan Owens ◽  
...  

Interpretation of newly acquired seismic data in the northern Houtman Sub-basin (Perth Basin) suggests the region contains potential source rocks similar to those in the producing Abrolhos Sub-basin. The regionally extensive late Permian–Early Triassic Kockatea Shale has the potential to contain the oil-prone Hovea Member source interval. Large Permian syn-rift half-graben, up to 10 km thick, are likely to contain a range of gas-prone source rocks. Further potential source rocks may be found in the Jurassic–Early Cretaceous succession, including the Cattamarra Coal Measures, Cadda shales and mixed sources within the Yarragadee Formation. This study investigated the possible maturity and charge history of these different source rocks. A regional pseudo-3D petroleum systems model was constructed using new seismic interpretations. Heat flow was modelled using crustal structure and possible basement composition determined from potential field modelling, and subsidence analysis was used to investigate lithospheric extension through time. The model was calibrated using temperature and maturity data from nine wells in the Houtman and Abrolhos sub-basins. Source rock properties are assigned based on an extensive review of total organic carbon, Rock Eval and kinetic data for the offshore northern Perth Basin. Petroleum systems analysis results show that Permian, Triassic and Early Jurassic source rocks may have generated large cumulative volumes of hydrocarbons across the northern Houtman Sub-basin, whereas the Middle Jurassic–Cretaceous sources remain largely immature. However, the timing of hydrocarbon generation and expulsion with respect to trap formation and structural reactivation is critical for the successful development and preservation of hydrocarbon accumulations.


2000 ◽  
Vol 40 (1) ◽  
pp. 26
Author(s):  
M.R. Bendall C.F. Burrett ◽  
H.J. Askin

Sedimentary successions belonging to three petroleum su persy stems can be recognised in and below the Late Carboniferous to Late Triassic onshore Tasmania Basin. These are the Centralian, Larapintine and Gondwanan. The oldest (Centralian) is poorly known and contains possible mature source rocks in Upper Proterozoic dolomites. The Larapintine 2 system is represented by rocks of the Devonian fold and thrust belt beneath the Tasmania Basin. Potential source rocks are micrites and shales within the 1.8 km-thick tropical Ordovician Gordon Group carbonates. Conodont CAI plots show that the Gordon Group lies in the oil and gas windows over most of central Tasmania and probably under much of the Tasmania Basin. Potential reservoirs are the upper reefal parts of the Gordon Group, paleokarsted surfaces within the Gordon Group and the overlying sandstones of the Siluro-Devonian Tiger Range and Eldon Groups. Seal rocks include shales within the Siluro-Devonian and Upper Carboniferous-Permian tillites and shales.The Gondwanan supersystem is the most promising supersystem for petroleum exploration within the onshore Tasmania Basin. It is divided into two petroleum systems— the Early Permian Gondwanan 1 system, and the Late Permian to Triassic Gondwanan 2 system. Excellent source rocks occur in the marine Tasmanite Oil Shale and other sections within the Lower Permian Woody Island and Quamby Formations of the Gondwanan 1 system and within coals and freshwater oil shales of the Gondwanan 2 system. These sources are within the oil and gas windows across most of the basin and probably reached peak oil generation at about 100 Ma. An oil seep, sourced from a Tasmanites-rich, anoxic shale, is found within Jurassic dolerite 40 km WSW of Hobart. Potential Gondwanan 1 reservoirs are the glaciofluvial Faulkner Group sandstones and sandstones and limestones within the overlying parts of the glaciomarine Permian sequence. The Upper Permian Ferntree Mudstone Formation provides an effective regional seal. Potential Gondwanan 2 reservoirs are the sandstones of the Upper Permian to Norian Upper Parmeener Supergroup. Traps consisting of domes, anticlines and faults were formed probably during the Early Cretaceous. Preliminary interpretation of a short AGSO seismic profile in the Tasmania Basin shows that, contrary to earlier belief, structures can be mapped beneath extensive and thick (300 m) sills of Jurassic dolerite. In addition, the total section of Gondwana to Upper Proterozoic to Triassic sediments appears to be in excess of 8,500 m. These recent studies, analysis of the oil seep and drilling results show that the Tasmanian source rocks have generated both oil and gas. The Tasmania Basin is considered prospective for both petroleum and helium and is comparable in size and stratigraphy to other glaciomarine-terrestrial Gondwanan basins such as the South Oman and Cooper Basins.


Nafta-Gaz ◽  
2021 ◽  
Vol 77 (6) ◽  
pp. 351-365
Author(s):  
Karol Spunda ◽  
◽  
Tomasz Słoczyński ◽  
Krzysztof Sowiżdżał ◽  
◽  
...  

The article presents the concept of petroleum systems modeling in the area with complex fold-thrust belt structure. The aim of the study was to verify the views on the influence of the overtrusting Carpathian orogen on the course of petroleum processes in the basement (Meso-Palaeozoic) formations. The project was implemented in the marginal zone of the Skole Unit (Outer Carpathians) overlapping various structural and tectonic units of the basement. The area of Rzeszów city was selected as it presents adequate complexity of the geological structure to meet assumed methodological objectives of the project and, at the same time, provides relatively vast amount of geological data available which creates a conditions for a comprehensive approach. The study was carried out using the Dynel 2D and PetroMod 2D software. The course of the structural and tectonic evolution of the area was reconstructed in 5 stages, the results of which were subsequently applied in a dynamic modeling of the petroleum systems. The modeling results made it possible to recreate and analyze the course of a complex geological processes, the effects of which are manifested, among others, by the time and amounts of generated hydrocarbons as well as the dynamics of expulsion, migration and accumulation processes. The results show the course of petroleum processes in each stage of the petroleum basin evolution, revealing a special role of thrust tectonic of Outer Carpathians on basement formations. For the adopted assumptions of the structural and tectonic evolution, the generation of hydrocarbons by Lower Palaeozoic source rocks was initiated with the overthrusting of the Carpathians. This increases the chances of their accumulation in reservoir intervals sealed by an overthrusting orogen. This is a positive premise in the context of petroleum exploration in the area.


2011 ◽  
Vol 51 (1) ◽  
pp. 45 ◽  
Author(s):  
Andrew Jones

The petroleum prospectivity of the northern Perth Basin has been assessed by Geoscience Australia (GA) as part of the Australian Government’s Offshore Energy Security Program, in support of the 2011 offshore acreage release. This assessment includes the first published synthesis of data from fourteen new field wildcat wells drilled in this part of the basin since the Cliff Head 1 discovery (2001), and the interpretation of new regional 2D seismic data acquired during GA survey 310. Most petroleum accumulations in the northern Perth Basin are associated with Permian and Triassic source and reservoir intervals, and are found onshore and nearshore (ie. Cliff Head, Frankland, Dunsborough and Perseverance discoveries). In addition to the technical and commercial successes, numerous wells in the offshore part of the basin have intersected residual oil columns indicative of trap breach. New and legacy palynological data from Permian to Cretaceous strata in offshore wells have been used to provide age constraints for a sequence stratigraphic framework for this part of the basin. New seismic data show Permo-Triassic strata that are stratigraphic equivalents of the productive onshore and nearshore Perth Basin petroleum system, also occur within Permian half-graben in the outer Abrolhos and Houtman sub-basins. Source rock, oil stain and fluid inclusion sampling from this interval suggest that the proven onshore petroleum system is also effective in the offshore. A refined tectono-stratigraphic model for the offshore basin provides insights into basin evolution, prospectivity and contributing factors driving trap breach. Geochemical sampling in the context of the new detailed sequence framework, including from recently dredged rock samples from incised canyons, has also provided insight into the potential effectiveness of a Jurassic/Cretaceous petroleum system in the Houtman and Zeewyck sub-basins.


2017 ◽  
Vol 68 (2) ◽  
pp. 97-108 ◽  
Author(s):  
Wissem Dhraief ◽  
Ferid Dhahri ◽  
Imen Chalwati ◽  
Noureddine Boukadi

Abstract The objective and the main contribution of this issue are dedicated to using subsurface data to delineate a basin beneath the Gulf of Tunis and its neighbouring areas, and to investigate the potential of this area in terms of hydrocarbon resources. Available well data provided information about the subsurface geology beneath the Gulf of Tunis. 2D seismic data allowed delineation of the basin shape, strata geometries, and some potential promising subsurface structures in terms of hydrocarbon accumulation. Together with lithostratigraphic data obtained from drilled wells, seismic data permitted the construction of isochron and isobath maps of Upper Cretaceous-Neogene strata. Structural and lithostratigraphic interpretations indicate that the area is tectonically complex, and they highlight the tectonic control of strata deposition during the Cretaceous and Neogene. Tectonic activity related to the geodynamic evolution of the northern African margin appears to have been responsible for several thickness and facies variations, and to have played a significant role in the establishment and evolution of petroleum systems in northeastern Tunisia. As for petroleum systems in the basin, the Cretaceous series of the Bahloul, Mouelha and Fahdene formations are acknowledged to be the main source rocks. In addition, potential reservoirs (Fractured Abiod and Bou Dabbous carbonated formations) sealed by shaly and marly formations (Haria and Souar formations respectively) show favourable geometries of trap structures (anticlines, tilted blocks, unconformities, etc.) which make this area adequate for hydrocarbon accumulations.


2017 ◽  
Vol 57 (2) ◽  
pp. 733
Author(s):  
E. Frery ◽  
M. Ducros ◽  
L. Langhi ◽  
J. Strand ◽  
A. Ross

3D stratigraphic, structural, thermal and migration modelling has become an essential part of petroleum systems analysis for passive margins, especially if complex 3D facies patterns and extensive volcanic activity are observed. A better understanding of such underexplored offshore areas requires a refined 3D basin modelling approach, with the implementation of realistically sized volcanic intrusions, source rocks and reservoir intervals. In this study, an integrated modelling workflow based on a Great Australian Bight case study has been applied. The 244800-km2 3D model integrates well data, marine surveys, 3D stratigraphic forward modelling and 3D basin modelling to better predict the effects of 3D facies variations and heat flow anomalies on the determination of the source rock-enriched intervals, the source rock maturity history and the hydrocarbon migration pathways. Plausible sedimentary sequences have been estimated using a stratigraphic forward model constrained by the limited available well data, seismic interpretation and published tectonic basin history. We also took into account other datasets to produce a thermal history model, such as the location of known volcanic intrusion, volcanic seamounts, bottom hole temperature and surface heat flow measurements. Such basin modelling integrates multiple datatypes acquired in the same basin and provides an ideal platform for testing hypotheses on source rock richness or kinetics, as well as on hydrocarbon migration timing and pathways evolution. The model is flexible, can be easily refined around specific zones of interest and can be updated as new datasets, such as new seismic interpretations and data from new sampling campaigns and wells, are acquired.


2012 ◽  
Vol 52 (2) ◽  
pp. 670
Author(s):  
Lidena Carr ◽  
Russell Korsch ◽  
Arthur Mory ◽  
Roger Hocking ◽  
Sarah Marshall ◽  
...  

During the past five years, the Onshore Energy Security Program, funded by the Australian Government and conducted by Geoscience Australia, in conjunction with state and territory geological surveys, has acquired deep seismic reflection data across several frontier sedimentary basins to stimulate petroleum exploration in onshore Australia. This extended abstract presents data from two seismic lines collected in Western Australia in 2011. The 487 km long Yilgarn-Officer-Musgrave (YOM) seismic line crossed the western Officer Basin in Western Australia, and the 259 km long, Southern Carnarvon Seismic line crossed the Byro Sub-basin of the Southern Carnarvon Basin. The YOM survey imaged the Neoproterozoic to Devonian western Officer Basin, one of Australia's underexplored sedimentary basins with hydrocarbon potential. The survey data will also provide geoscientific knowledge on the architecture of Australia's crust and the relationship between the eastern Yilgarn Craton and the Musgrave Province. The Southern Carnarvon survey imaged the onshore section of the Ordovician to Permian Carnarvon Basin, which offshore is one of Australia's premier petroleum-producing provinces. The Byro Sub-basin is an underexplored depocentre with the potential for both hydrocarbon and geothermal energy. Where the seismic traverse crossed the Byro Sub-basin it imaged two relatively thick half graben, on west dipping bounding faults. Structural and sequence stratigraphic interpretations of the two seismic lines are presented in this extended abstract.


Georesursy ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 78-84
Author(s):  
Anna A. Suslova ◽  
Antonina V. Stoupakova ◽  
Alina V. Mordasova ◽  
Roman S. Sautkin

Barents Sea basin is the most explored and studied by the regional and petroleum geologists on the Russian Arctic shelf and has approved gas reserves. However, there are many questions in the petroleum exploration, one of them is the structural reconstruction. During its geological evolution, Barents Sea shelf was influenced by the Pre-Novaya Zemlya structural zone that uplifted several times in Mesozoic and Cenozoic. The main goal of the research is to clarify the periods of structural reconstructions of the Eastern Barents shelf and its influence on the petroleum systems of the Barents Sea shelf. A database of regional seismic profiles and offshore borehole data collected over the past decade on the Petroleum Geology Department of the Lomonosov Moscow State University allows to define main unconformities and seismic sequences, to reconstruct the periods of subsidence and uplifts in Mesozoic and Cenozoic. The structural reconstructions on the Eastern Barents Sea in the Triassic-Jurassic boundary led to intensive uplifts and formation of the huge inversion swells, which is expressed in erosional truncation and stratigraphic unconformity in the Upper Triassic and Lower Jurassic strata. In the Jurassic period, tectonic subsidence reigned on the shelf, when the uplifts including the highs of Novaya Zemlya were partially flooded and regional clay seal and source rocks – Upper Jurassic «black clays» – deposited on the shelf. The next contraction phase manifested itself as a second impulse of the growth of inversion swells in the Late Jurassic-Early Cretaceous. Cenozoic uplift of the Pre-Novaya Zemlya structural zone and the entire Barents Sea shelf led to significant erosion of the Mesozoic sediments, on the one hand, forming modern structural traps, and on the other, significantly destroying the Albian, once regional seal.


2011 ◽  
Vol 51 (1) ◽  
pp. 295 ◽  
Author(s):  
Russell Korsch ◽  
Heike Struckmeyer ◽  
Alison Kirkby ◽  
Laurie Hutton ◽  
Lidena Carr ◽  
...  

Deep seismic reflection surveys in north Queensland that were collected in 2006 and 2007 discovered a previously unknown sedimentary basin, now named the Millungera Basin, which is completely covered by a thin succession of sediments of the Jurassic–Cretaceous, Eromanga-Carpentaria Basin. Interpretation of regional aeromagnetic data suggests that the basin could have areal dimensions of up to 280 km by 95 km. Apart from regional geophysical data, virtually no confirmed geological information exists on the basin. To complement the seismic data, new magnetotelluric data have been acquired on several lines across the basin. An angular unconformity between the Eromanga and Millungera basins indicates that the upper part of the Millungera Basin was eroded prior to deposition of the Eromanga-Carpentaria Basin. Both the western and eastern margins of the Millungera Basin are truncated by thrust faults, with well-developed hangingwall anticlines occurring above the thrusts at the eastern margin. The basin thickens slightly to the east, to a maximum preserved subsurface depth of ˜3,370 m. Using sequence stratigraphic principles, three discrete sequences have been mapped. The geometry of the stratigraphic sequences, the post-depositional thrust margins, and the erosional unconformity at the top of the succession all indicate that the original succession across much of the basin was thicker–by up to at least 1,500 m–than preserved today. The age of the Millungera Basin is unknown, but petroleum systems modelling has been carried out using two scenarios, that is, that the sediment fill is equivalent in age to (1) the Neoproterozoic-Devonian Georgina Basin, or (2) the Permian–Triassic Lovelle Depression of the Galilee Basin. Using the Georgina Basin analogue, potential Cambrian source rocks are likely to be mature over most of the Millungera Basin, with significant generation and expulsion of hydrocarbons occurring in two phases, in response to Ordovician and Cretaceous sediment loading. For the Galilee Basin analogue, potential Permian source rocks are likely to be oil mature in the central Millungera Basin, but immature on the basin margins. Significant oil generation and expulsion probably occurred during the Triassic, in response to late Permian to Early Triassic sediment loading. Based on the seismic and potential field data, several granites are interpreted to occur immediately below the Millungera Basin, raising the possibility of hot rock geothermal plays. Depending on its composition, the Millungera Basin could provide a thermal blanket to trap any heat which is generated. 3D inversion of potential field data suggests that the inferred granites range from being magnetic to nonmagnetic, and felsic (less dense) to more mafic. They may be part of the Williams Supersuite, which is enriched in uranium, thorium and potassium, and exposed just to the west, in the Mount Isa Province. 3D gravity modelling suggests that the inferred granites have a possible maximum thickness of up to 5.5 km. Therefore, if granites with the composition of the Williams Supersuite occur beneath the Millungera Basin, in the volumes indicated by gravity inversions, then, based on the forward temperature modelling, there is a good probability that the basin is prospective for geothermal energy.


2014 ◽  
Vol 54 (1) ◽  
pp. 383
Author(s):  
Thomas Bernecker ◽  
Dianne Edwards ◽  
Tehani Kuske ◽  
Bridgette Lewis ◽  
Tegan Smith

The Australian Government formally releases new offshore exploration areas at the annual APPEA conference. Industry nominations provided guidance for the selection of gazettal areas, and in 2014 all 30 areas are supported by such nominations. The release areas are located across various offshore hydrocarbon provinces ranging from mature basins with ongoing oil and gas production to exploration frontiers. Work program bids are invited for two rounds closing on 2 October 2014 and 2 April 2015, while the closing date for four cash bid areas is 5 February 2015. Twenty-nine of the 2014 Release Areas are located along Australia’s northern margin within the Westralian Superbasin, which encompasses the rift-basins that extend from the Northern Carnarvon Basin to the Bonaparte Basin. Evolution during Gondwana break-up established a series of petroleum systems, many of which have been successfully explored, while others remain untapped. Only one area was nominated and approved for release on Australia’s southern margin. The 220 graticular blocks cover almost the entire Eyre Sub-basin of the Bight Basin. In the context of the recent commencement of large-scale exploration programs in the Ceduna and Duntroon sub-basins, this release area provides additional opportunities to explore an offshore frontier. Geoscience Australia’s new long-term petroleum program supports industry activities by engaging in petroleum geological studies that are aimed at the establishment of margin to basin-scale structural frameworks and comprehensive assessments of Australian source rocks underpinning all hydrocarbon prospectivity studies.


Sign in / Sign up

Export Citation Format

Share Document