An initial investigation on rumen fermentation pattern and methane emission of sheep offered diets containing urea or nitrate as the nitrogen source

2012 ◽  
Vol 52 (7) ◽  
pp. 653 ◽  
Author(s):  
L. Li ◽  
J. Davis ◽  
J. Nolan ◽  
R. Hegarty

The effects of dietary nitrate and of urea on rumen fermentation pattern and enteric methane production were investigated using 4-month-old ewe lambs. Ten lambs were allocated into two groups (n = 5) and each group was offered one of two isonitrogenous and isoenergetic diets containing either 1.5% urea (T1) or 3% calcium nitrate (T2). Methane production was estimated using open-circuit respiration chambers after 6 weeks of feeding. No difference in nitrogen (N) balance, apparent digestibility of N or microbial N outflow existed between treatments (P > 0.05). Animals offered the T2 diet lost less energy through methane than did those fed the T1 diet (P < 0.05). Total volatile fatty acid concentration, molar proportion of propionate, and the molar ratio of acetate to propionate in rumen fluid were not affected by dietary N source. Compared with urea inclusion, nitrate inclusion caused a significantly higher acetate and lower butyrate percentage in rumen volatile fatty acid. Nitrate supplementation tended to lower methane production by ~7.7 L/day relative to urea supplementation (P = 0.06). Methane yield (L/kg DM intake) was reduced (P < 0.05) by 35.4% when 1.5% urea was replaced by 3% calcium nitrate in the diet. Emission intensity (L methane/kg liveweight gain) was ~17.3% lower in the nitrate-supplemented sheep when compared with urea-fed sheep; however, the reduction was not statistically significant (P > 0.05). This study confirms that the presence of nitrate in the diet inhibits enteric methane production. As no clinical symptoms of nitrite toxicity were observed and sheep receiving nitrate-supplemented diet had similar growth to those consuming urea-supplemented diet, it is concluded that 3% calcium nitrate can replace 1.5% urea as a means of meeting ruminal N requirements and of reducing enteric methane emissions from sheep, provided animals are acclimated to nitrate gradually.

2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Avijit Dey ◽  
Shyam Sundar Paul ◽  
Puran Chand Lailer ◽  
Satbir Singh Dahiya

AbstractEnteric methane production contributes significantly to the greenhouse gas emission globally. Although, buffaloes are integral part of livestock production in Asian countries, contributing milk, meat and draft power, the contribution of enteric methane to environmental pollution attracts attention. The present study investigated the efficacy of garlic (Allium sativum) oil in reducing enteric methane production from buffaloes (Bubalus bubalis) by in vitro rumen fermentation. Garlic oil (GOL) was tested at four concentrations [0 (Control), 33.33 µl (GOL-1), 83.33 µl (GOL-2) and 166.66 µl (GOL-3) per litre of buffered rumen fluid] in 100-ml graduated glass syringes and incubated at 39℃ for 24 h for in vitro rumen fermentation study. Supplementation of GOL-1 increased (p < 0.05) total gas production in comparison with GOL-3; however, it remained comparable (p > 0.05) with control and GOL-2. Graded doses of garlic oil inclusions reduced (p < 0.001) methane concentration (%) in total gas and total methane production (ml/g DM), irrespective of concentrations. The feed degradability, volatile fatty acids and microbial biomass production (MBP) were not affected (p > 0.05) by GOL-1, but these tended to decrease in GOL-2 with marked reduction (p < 0.01) in GOL-3. The decrease (p < 0.01) in NH3–N concentration in fermentation fluid in the presence of garlic oil, irrespective of concentration, suggests reduced deamination by inhibiting rumen proteolytic bacterial population. The activities of ruminal fibrolytic enzymes (CMCase, xylanase, β-glucosidase, acetyl esterase) were not affected by lower dose (GOL-1) of garlic oil; however, reduction (p < 0.05) of these enzymes activity in rumen liquor was evident at higher doses (GOL-2 and GOL-3) of supplementation. This study shows positive impact of garlic oil supplementation at low dose (33.33 µl/l of rumen fluid) in reducing enteric methane production, thereby, abatement of environmental pollution without affecting feed digestibility.


2019 ◽  
Vol 59 (4) ◽  
pp. 709 ◽  
Author(s):  
F. Garcia ◽  
P. E. Vercoe ◽  
M. J. Martínez ◽  
Z. Durmic ◽  
M. A. Brunetti ◽  
...  

The aim of the present study was to evaluate the impact of essential oils (EO) from Lippia turbinata (LT) and Tagetes minuta (TM) as well as the rotation of both EO on fermentation parameters in vitro. Daily addition of LT, TM, or a 3-day rotation between them (TM/LT), as well as a control (without EO), was evaluated using the rumen simulation technique (Rusitec). The experiment lasted 19 days, with a 7-day adaptation period, followed by 12 days of treatment (Days 0–12). The EO were dissolved in ethanol (70% vol/vol) to be added daily to fermenters (300 μL/L) from Day 0. Daily measurements included methane concentration, total gas production, apparent DM disappearance and pH, which started 2 days before the addition of treatments. On Days 0, 4, 8 and 12 apparent crude protein disappearance and neutral detergent fibre disappearance, ammonia and volatile fatty acid concentration and composition were determined. Methane production was significantly inhibited shortly after addition of both EO added individually, and persisted over time with no apparent adaptation to EO addition. The TM/LT treatment showed a similar effect on methane production, suggesting that rotating the EO did not bring further improvements in reduction or persistency compared with the inclusion of the EO individually. Gas production, total volatile fatty acid concentration and composition and apparent crude protein disappearance were not affected by EO addition. Compared with the control, a 5% reduction of apparent DM disappearance and a 15% reduction of neutral detergent fibre disappearance were observed with the addition of EO. Only TM and TM/LT reduced ammonia concentration. Given the significant and persistent antimethanogenic activity of both EO, and the potential of T. minuta to modify nitrogen metabolism, EO from these plant species are of interest for developing new feed additives with potential application in ruminant nutrition that are also likely to be acceptable to consumers.


1993 ◽  
Vol 57 (2) ◽  
pp. 329-331 ◽  
Author(s):  
A. Arieli ◽  
D. Sklan ◽  
G. Kissil

An experiment was designed to test the value of Ulva lactuca, produced from an integrated mariculture project, using six Finn-Merino crossbred ram lambs. Diets consisted of concentrate with vetch hay for the control, with additional Ulva for the treatment diet. Measurements of digestibility of energy, volatile fatty acid concentration in the rumen fluid, effective degradability of nitrogen in the rumen, rumen ammonia concentration and excretion of nitrogen in urine all indicated that Ulva could be categorized as a low-energy high-nitrogen foodstuff.


2003 ◽  
Vol 2003 ◽  
pp. 122-122
Author(s):  
V. Fievez ◽  
B. Vlaeminck ◽  
W. Steinberg ◽  
I. Immig ◽  
D. Demeyer

In vitro supplementation of 0.05% [on a substrate basis (wt/wt)] - but not of 0.01% - of 9,10-Anthraquinone (AQ) inhibited rumen methanogenesis, reduced total volatile fatty acid (VFA) concentrations and molar proportions of acetate (Acet), increased proportions of propionate (Prop) and butyrate (But) and resulted sometimes in H2 accumulation (Garcia-Lopez et al., 1996). In vivo administration of high amounts of AQ [5% on a substrate basis (wt/wt)] to lambs depressed CH4 and increased H2 concentrations in ruminal gases during the complete 19 days of administration, whereas original concentrations were re-installed within 6 days after the removal of AQ from the diet (Kung et al., 1996). In this experiment we aimed to study the dose effect of AQ on in vitro rumen fermentation and modifications to rumen fermentation when administering 0.05% of AQ in vivo.


2018 ◽  
Vol 58 (2) ◽  
pp. 262 ◽  
Author(s):  
N. Tomkins ◽  
A. J. Parker ◽  
G. Hepworth ◽  
M. J. Callaghan

This experiment has quantified the methane abatement potential of nitrate in the context of extensively managed cattle. The experimental protocol consisted of two, 4 × 4 Latin square design using eight rumen fistulated Bos indicus steers fed Flinders grass (Iseilema spp.) hay ad libitum. The treatments were Control (nil nitrogen supplement), urea (32.5 g/day urea) and two levels of calcium nitrate: CaN1 and CaN2 (to provide 4.6 g and 7.9 g NO3/kg DM equivalent to ~0.46% and 0.80% of DM, respectively). Complete supplement intake was ensured by dosing any supplement that had not been voluntarily consumed, through the rumen fistula, 1 h after feeding. Enteric methane production was measured using open circuit respiration chambers. Methane yield (g/kg DM intake) from the CaN2 treatment tended to be lower (P < 0.07) than either the Control or urea treatments. There were no significant differences in methane yield between Control, urea or CaN1 treatments. Mean blood methaemoglobin concentrations were significantly (P < 0.001) higher for CaN2 animals compared with the Control, urea or CaN1 treatments. In addition, a significant time effect after dosing (P < 0.001) and a significant interaction between treatment and time after dosing (P < 0.001) was apparent. Overall mean total volatile fatty acid concentration was 74.0 ± 1.53 mM with no significant treatment effect, but a significant effect for both time of sampling (3 h vs 6 h) within days and among 7 sampling days. The inclusion of calcium nitrate as a non-protein-N source significantly reduced the molar proportions of butyrate (P < 0.001), iso-butyrate (P < 0.05) and iso-valerate (P < 0.001) compared with the Control. The provision of nitrate supplements, providing both a NPN and an alternative sink for H that would otherwise support enteric methanogenesis, has some potential. In extensive grazing systems effective methane abatement strategies are required. The elevated concentration of MetHb using CaN2 suggests that the strategy of replacing urea with nitrate in supplements fed to extensively managed cattle in the northern rangelands may be inappropriate where supplement intake cannot be controlled on an individual animal basis and forage quality is seasonally variable.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sardar Muhammad Amanullah ◽  
Dong Hyeon Kim ◽  
Dimas Hand Vidya Paradhipta ◽  
Hyuk Jun Lee ◽  
Young Hoo Joo ◽  
...  

This study estimated the effect of essential fatty acid (FA) supplementation on fermentation indices, greenhouse gases, microbes, and FA profiles in the rumen. The treatments used pure FAs consisting of C18:2n-6 FA (LA), C18:3n-3 FA (LNA), or a mixture of these FAs at 1:1 ratio (Combo). In vitro rumen incubation was performed in 50 mL glass serum bottles containing 2 mg of pure FAs, 15 mL of rumen buffer (rumen fluid+anaerobe culture medium = 1:2), and 150 mg of synthetic diet (411 g cellulose, 411 g starch, and 178 g casein/kg dry matter) at 39°C for 8 h with five replications and three blanks. In rumen fermentation indices, LA exhibited highest (P &lt; 0.05) ammonia-N and total gas volume after 8 h of incubation. Furthermore, LA presented lower (P &lt; 0.05) pH with higher (P &lt; 0.05) total volatile fatty acid (P = 0.034) than Combo, while LNA was not different compared with those in the other treatments. Additionally, Combo produced highest (P &lt; 0.05) CO2 with lowest (P &lt; 0.05) CH4. In the early hours of incubation, LA improved (P &lt; 0.005) Fibrobacter succinogenes and Ruminococcus flavefaciens, while LNA improved (P &lt; 0.005) Ruminococcus albus. After 8 h of incubation, LNA had lower (P &lt; 0.05) methanogenic archaea than LA and Combo but had higher (P &lt; 0.05) rumen ciliates than LA. R. albus was higher (P &lt; 0.05) in LA than in LNA and Combo. It was observed that the rate of biohydrogenation of n-6 and n-3 FAs was comparatively lowest (P &lt; 0.05) in Combo, characterized by higher C18:2n-6 and/or C18:3n-3 FA and polyunsaturated FA (PUFA) concentrations with lower (P &lt; 0.05) concentrations of C18:0 and saturated FA and the ratio of saturated FAs to PUFAs. Therefore, this study concluded that dietary C18:2n-6 could improve populations of fibrolytic bacteria and rumen fermentation indices, but dietary mixture of pure C18:2n-6 and C18:3n-3 is recommended because it is effective in reducing enteric methane emissions and resisting biohydrogenation in the rumen with less effect on rumen microbes.


2005 ◽  
Vol 45 (6) ◽  
pp. 665 ◽  
Author(s):  
Y. J. Williams ◽  
G. P. Walker ◽  
P. T. Doyle ◽  
A. R. Egan ◽  
C. R. Stockdale

An experiment was conducted in which cows in early lactation grazed Persian clover (Trifolium resupinatum L.) or perennial ryegrass (Lolium perenne L.)-dominant pastures at low or high pasture allowances in order to determine the effects of pasture type and level of feeding on rumen fermentation patterns. The hypotheses for grazing dairy cows were: (i) the consumption of Persian clover would result in a more rapid rate of degradation and less stable rumen fermentation patterns compared with perennial ryegrass; and (ii) the greater intake of cows grazing at high compared with low pasture allowances would also cause less stable rumen fermentation patterns. Stability of rumen fermentation refers to the level to which rumen fluid pH declines, especially for long periods of a day, indicating that the rumen is not coping with neutralising and/or removing acids. Cows grazing Persian clover had lower (P<0.05) average daily rumen fluid pH (5.7 v. 5.9), molar proportions of acetic acid (68.3 v. 70.6%) and ratios of lipogenic to glucogenic volatile fatty acid (4.6 v. 5.1) in the rumen than those grazing perennial ryegrass. They had higher (P<0.05) rumen fluid ammonia-N (26.3 v. 13.0 mg/100 mL) and total volatile fatty acid (165 v. 134 mmol/L) concentrations and molar proportions of butyric (11.3 v. 10.7%) and propionic (17.2 v. 16.1%) acids than cows grazing perennial ryegrass. Cows grazing at low pasture allowances had a higher (P<0.05) average daily rumen fluid pH (5.9 v. 5.7) and lower rumen fluid ammonia-N (18.6 v. 20.7 mg/100 mL) and total volatile fatty acid (143 v. 156 mmol/L) concentrations than cows grazing at high pasture allowances. Cows given Persian clover at the high allowance had a rumen fluid pH less than 6.0 for the entire day while rumen fluid pH was below 6.0 for at least 15 h of the day on all the other treatments. There was no effect (P>0.05) of pasture allowance on the degradation rate of perennial ryegrass dry matter, but the higher allowance of Persian clover resulted in the highest (P<0.05) rate of degradation of dry matter compared with either ryegrass treatment or the low allowance of Persian clover. The effective dry matter degradability of Persian clover was greater (P<0.05) than that of perennial ryegrass, and the effective dry matter degradability of herbage in cows grazing at low allowances was greater (P<0.05) than at higher allowances. However, future research should consider neutral detergent fibre degradation in grazing dairy cows with low rumen fluid pH levels.


Sign in / Sign up

Export Citation Format

Share Document