Effects of black seed oil and Ferula elaeochytris supplementation on ruminal fermentation as tested in vitro with the rumen simulation technique (Rusitec)

2015 ◽  
Vol 55 (6) ◽  
pp. 736 ◽  
Author(s):  
F. Klevenhusen ◽  
K. Deckardt ◽  
Ö. Sizmaz ◽  
S. Wimmer ◽  
A. Muro-Reyes ◽  
...  

Plant bioactive compounds are currently viewed as possible feed additives in terms of methane mitigation and improvement of ruminal fermentation. A range of analyses, including the botanical characterisation, chemical composition and in vitro efficiency, have to be conducted before testing the compounds in vivo. Therefore, the aims of this study were (1) to identify the main bioactive components of black seed (Nigella sativa) oil (BO) and of the root powder of Ferula elaeochytris (FE), and (2) to investigate their effects on ruminal fermentation in vitro, when supplemented in different dosages to a diet (1 : 1, forage : concentrate), using the rumen simulation technique (Rusitec). Main compounds of BO were thymoquinone and p-cymene and α-pinene in FE. Supplementation of the diet with BO and FE did not affect concentration of volatile fatty acids but ammonia concentrations decreased with both supplements (P < 0.001). No effects of supplements on protozoal counts were detected but in vitro disappearance of DM and organic matter tended to increase with 50 mg/L FE (P < 0.1), compared with the control.

2016 ◽  
Vol 56 (3) ◽  
pp. 402 ◽  
Author(s):  
Kyoung Hoon Kim ◽  
Selvaraj Arokiyaraj ◽  
Jinwook Lee ◽  
Young Kyoon Oh ◽  
Ho Young Chung ◽  
...  

The objective of this study was to evaluate the anti-methanogenic effect of rhubarb (Rheum spp.) on in vitro, in vivo, and bacterial community composition using Quantitative Insights into Microbial Ecology sequencing. Rhubarb root powder was tested at different concentrations (0, 0.33, 0.67, and 1.33 g/L) in vitro, and all incubations were carried out in triplicate two runs on separate days. Concentrations of 0.67 and 1.33 g/L rhubarb significantly (P < 0.05) reduced methane production and the acetate : propionate ratio compared with those of the Control, without adverse effects on total volatile fatty acids and total gas production. In the second in vivo trial, four Hanwoo (Korean native) steers (live bodyweight, 556 ± 46 kg) with a ruminal cannula were housed individually in metabolic stalls and fed a basal diet twice daily in equal amounts at 0900 hours and 2100 hours. The before rhubarb treatment (before treatment) duration was 24 days for all steers; 14 days were used for diet adaptation and 10 days were used for gas samples collected 1, 2, and 3 h after the morning feeding on Days 3, 5, 7, and 9. We used three syringe needles passed through the ruminal cannula stopper at different time points as a simple and rapid method to sample rumen gas. Thereafter, three mesh bags containing 30 g of sliced rhubarb root each were placed at different depths in the rumen of each steer for 14 days (after treatment), and gas samples were collected on Days 4, 7, 10, 12, and 13. The results showed a significant (P < 0.05) decrease in methane concentration from the rhubarb-treated steers and provide the evidence that this method would be useful for in vivo screening of anti-methanogenic feed additives or plant material. Furthermore, 16s RNA sequencing after treatment showed increases in the numbers of Prevotella, and Lactobacillus, but decreases in Methanobrevibacter. In conclusion, rhubarb had an anti-methanogenic effect in vitro and in vivo, and the increase in the number of Prevotella shifted ruminal fermentation towards propionate production.


1970 ◽  
Vol 46 (3) ◽  
pp. 325-335
Author(s):  
E. Maleki ◽  
G.Y. Meng ◽  
M. Faseleh Jahromi ◽  
R. Jorfi ◽  
A. Khoddami ◽  
...  

The objective of this study was to determine the effect of pomegranate (Punica granatum L.) seed oil (PSO) on gas and methane (CH4) production, ruminal fermentation and microbial populations under in vitro conditions. Three treatments consisting of a control diet containing 10 mg tallow (CON); the control diet with 5 mg PSO + 5 mg tallow (MPSO) and the control diet containing 10 mg PSO (HPSO) were compared. Ten mg of the experimental fat/oil samples were inserted into a gas-tight 100 mL plastic syringe containing 30 mL of an incubation inoculum and 250 mg of a basic substrate of a hay/concentrate (1/1, w/w) mixture. In vitro gas production was recorded over 0, 2, 4, 6, 8, 10, 12 and 24 h of incubation. After 24 hours, incubation was stopped, and methane production, pH, volatile fatty acids (VFAs) and microbial counts were measured in the inoculant. Gas production at 4, 6, 8, 10, 12 and 24 h incubation, metabolizable energy and in vitro organic matter disappearance increased linearly and quadratically as level of PSO increased. Furthermore, the 10 mg PSO (HPSO) decreased CH4 production by 21.0% compared with the control (CON) group. There were no significant differences in total and individual VFA concentrations between different levels of PSO, except for butyric acid. After 24 h of incubation, methanogenesis decreased in the HPSO compared with the MPSO and CON treatments. In addition, total bacteria and protozoa counts increased with rising PSO levels, while population methanogenesis declined significantly. These results suggested that PSO could reduce methane emissions, which might be beneficial to nutrient utilization and growth in ruminants.


2021 ◽  
Author(s):  
Sonny Ramos ◽  
Seon Ho Kim ◽  
Chang Dae Jeong ◽  
Lovelia L. Mamuad ◽  
A-rang Son ◽  
...  

Abstract Background: Rumen bacterial community is mainly affected by the type of diet consumed by the host animals. High concentrate diet increases the abundance of lactic acid producers and utilizers due to high level of non-structural carbohydrates thus reducing the number of fiber-degrading bacteria because of drastic decrease in pH. Dietary buffers are essential in regulating rumen pH through the compounds responsible in resisting drastic decrease in pH once cattle were fed with high-concentrate diet. However, no study has evaluated the effects of buffering capacity and efficiency in alleviating chronic acidosis in rumen. Ruminal metataxonomic and fermentation characteristics analyses were conducted to evaluate the effect of different buffering capacities on in vitro and in vivo experiments in high-concentrate fed Hanwoo steers. Results: Results revealed that BC0.9% and BC0.5% had similar and significant effect (P < 0.05) on in vitro ruminal fermentation at 3 to 24 h incubation. Both BC0.9% and BC0.5% had significantly highest (P < 0.05) buffering capacity, pH, and ammonia-nitrogen (NH3-N) than BC0.3% and CON at 24 h of incubation. Individual and total volatile fatty acids (VFA) were significantly lowest in CON. Increasing buffering capacity concentration showed linear effect on pH at 6 to 24 h while total gas and NH3-N at 3 and 12 h. Phylum Bacteroidetes dominated all treatments but a higher abundance of Firmicutes in BC0.5% than others. Ruminoccocus bromii and Succiniclasticum ruminis were dominant in BC0.5% and Bacteroides massiliensis in BC0.3%. The normalized data of relative abundance of observed OTUs’ representative families have grouped the CON with BC0.3% in the same cluster, whereas BC0.5% and BC0.9% were clustered separately which indicates the effect of varying buffering capacity of buffer agents. Principal coordinate analysis (PCoA) on unweighted UniFrac distances revealed close similarity of bacterial community structures within and between treatments and control, in which BC0.9% and BC0.3% groups showed dispersed community distribution. Conclusion: Our findings showed that increasing buffering capacity enhances rumen fermentation parameters and affects rumen microbiome by altering bacterial community through distinct structure between high and low buffering capacity, thus an important factor contributed to the prevention of ruminal acidosis during a high-concentrate diet.


2021 ◽  
pp. 1-12
Author(s):  
Amr E. El-Nile ◽  
Amr S. Morsy ◽  
Hani M. El-Zaiat ◽  
Wael G. Fahmy ◽  
Alaa E. El-Komy ◽  
...  

2012 ◽  
Vol 57 (No. 1) ◽  
pp. 10-18 ◽  
Author(s):  
F. Leiber ◽  
C. Kunz ◽  
M. Kreuzer

It was hypothesized that buckwheat, especially its flowers, influences foregut fermentation in ruminant animals because it is rich in phenolic compounds. The entire fresh aerial buckwheat herb, or its parts (leaves, stems, flowers and grain), were incubated for 24 h together with pure ryegrass (1:1, dry matter basis) in an in vitro ruminal fermentation system (Hohenheim Gas Test). Additionally ryegrass, supplemented with 0, 0.5, 5, or 50 mg rutin trihydrate/g dry matter, was incubated. Contents of extractable phenols (g/kg dry matter) were the highest in buckwheat flowers (88), followed by leaves (63), and the lowest in ryegrass (8). The levels of production of total gas and volatile fatty acids demonstrated that the nutritional value of buckwheat was slightly lower than that of ryegrass. Compared to ryegrass alone, ruminal transformation of dietary protein-N <br />into ammonia was lower with 50 mg rutin, buckwheat flowers and buckwheat leaves. Thus, these treatments appeared to have partly protected dietary protein from ruminal degradation. Rutin, at the highest level, buckwheat flowers and the total aerial fraction of the buckwheat plant suppressed methane per unit of total gas by &gt; 10%, either at elevated (rutin) or reduced total gas volume. This indicates that the ways of the influence on the ruminal fermentation pattern differed between pure rutin and buckwheat. In vivo studies have to confirm these potentially beneficial effects of buckwheat if used as forage for ruminants and clarify the role of further phenolic compounds present in buckwheat. Abbreviations: DM = dry matter, HGT = Hohenheim Gas Test, NDF = neutral detergent fibre, TEP = total extractable phenols, VFA = volatile fatty acids


2016 ◽  
Vol 56 (3) ◽  
pp. 641 ◽  
Author(s):  
Z. Durmic ◽  
P. J. Moate ◽  
J. L. Jacobs ◽  
J. Vadhanabhuti ◽  
P. E. Vercoe

A study was conducted to examine in vitro ruminal fermentation profiles and methane production of some alternative forage species (n = 10) in Australia. Extent of fermentation was assessed using an in vitro batch fermentation system, where total gas production, methane production, and concentrations in ruminal fluid of volatile fatty acids (VFA) and ammonia were measured. Forages varied in their fermentability, with highest total gas, methane, VFA and ammonia production recorded from selected samples of Brassica napus L. cv. Winfred. Lowest methane production (i.e. 30% less than that formed by the highest-producing one) was observed in Plantago lanceolata L. cv. Tonic and Cichorium intybus L. cv. Choice. Selected plants, including P. lanceolata L. cv. Tonic, Brassica rapa L. cv. Marco, Brassica napus L. cv. Hunter had reduced acetate : propionate ratio and/or ammonia concentration, along with relatively low methane production compared with other species tested, while overall fermentation was not affected. It was concluded that selected novel forages have some advantageous fermentability profiles in the rumen and, in particular, inhibit methane production. However, before these can be recommended as valuable supplementary feedstuffs for ruminants in Australia, further studies are needed to confirm these effects over a range of samples, conditions and in vivo.


Fermentation ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 109
Author(s):  
Sukruthai Sommai ◽  
Anusorn Cherdthong ◽  
Chanon Suntara ◽  
Sarong So ◽  
Metha Wanapat ◽  
...  

Two experiments were conducted under this study: Experiment 1 was to study production yield, chemical composition, and in vitro degradability of Brazilian spinach (Alternanthera sissoo; BS) leaf and leaf + leaf-stalk at various maturity ages of 15, 30, 45, and 60 days after plantation and regrowth and Experiment 2 was to evaluate the effect of flavonoid extract from BS leaf and leaf + leaf-stalk and dietary ratios on ruminal gas production, fermentation characteristics, and in vitro degradability. Experiment 1 showed that maturity ages after planting and regrowth increased, the yield significantly increased. Increasing maturity ages significantly (p < 0.05) increased neutral detergent fiber and acid detergent fiber content and decreased crude protein content, total flavonoid (TF) content, and degradability for both leaf and leaf + leaf-stalk. Maturity ages from 15 to 30 days after plantation and regrowth resulted (p < 0.05) the highest TF content and degradability for both leaf and leaf + leaf-stalk. Thus, BS leaf and leaf + leaf-stalk samples from 15 to 30 days of age were used for flavonoid extraction and used in the Experiment 2. Experiment 2 was conducted according to a 3 × 5 factorial experiment. Three roughage to concentrate (R:C) ratios at 50:50, 40:60, and 30:70 were used, and five levels of flavonoid extract (FE) at 0, 10, 20, 30, and 40 mg of substrate dry matter (DM) were supplemented. Experiment 2 showed that R:C ratio and FE had an interaction effect only on acetate to propionate ratio. Varying R:C ratios significantly increased (p < 0.05) in vitro DM degradability, total volatile fatty acids (VFA), and propionate (C3) concentration. FE supplementation linearly (p < 0.05) increased total VFA and C3 concentration and decreased methane production and protozoal population. This study could conclude that FE from BS could effectively modulate ruminal fermentation and decrease methane production. However, in vivo study needs to elucidate in order to validate the present results.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Amaury Ábrego-Gacía ◽  
Héctor M. Poggi-Varaldo ◽  
Vania Robles-González ◽  
Teresa Ponce-Noyola ◽  
Graciano Calva-Calva ◽  
...  

AbstractMethane from enteric fermentation is the gas with the greatest environmental impact emitted by ruminants. Lovastatin (Lv) addition to feedstocks could be a strategy to mitigate rumen methane emissions via decreasing the population of methanogenic archaea (MA). Thus, this paper provides the first overview of the effects of Lv supplementation, focusing on the inhibition of methane production, rumen microbiota, and ruminal fermentation. Results indicated that Lv treatment had a strong anti-methanogenic effect on pure strains of MA. However, there are uncertainties from in vitro rumen fermentation trials with complex substrates and rumen inoculum.Solid-state fermentation (SSF) has emerged as a cost-effective option to produce Lv. In this way, SSF of agricultural residues as an Lv-carrier supplement in sheep and goats demonstrated a consistent decrease in ruminal methane emissions. The experimental evidence for in vitro conditions showed that Lv did not affect the volatile fatty acids (VFA). However, in vivo experiments demonstrated that the production of VFA was decreased. Lv did not negatively affect the digestibility of dry matter during in vitro and in vivo methods, and there is even evidence that it can induce an increase in digestibility. Regarding the rumen microbiota, populations of MA were reduced, and no differences were detected in alpha and beta diversity associated with Lv treatment. However, some changes in the relative abundance of the microbiota were induced. Further studies are recommended on: (i) Lv biodegradation products and stability, as well as its adsorption onto the solid matter in the rumen, to gain more insight on the “available” or effective Lv concentration; and (ii) to determine whether the effect of Lv on ruminal fermentation also depends on the feed composition and different ruminants.


2021 ◽  
Vol 24 (2) ◽  
pp. 81
Author(s):  
Pamungkas Rizki Ferdian ◽  
Rizki Rabeca Elfirta ◽  
Qori Emilia ◽  
Azra Zahrah Nadhirah Ikhwani

COVID-19, caused by SARS-CoV-2, has become a massive worldwide concern of the 21st century. One potential strategy to block the biochemical pathway of SARS-CoV-2 was by inhibiting the main protease (Mpro), which is a key enzyme on viral replication. Black seed (Nigella sativa L.) has a long history for its use as a traditional medicine. Therefore, we hypothesised that the black seed contains numerous active compounds that could potentially confer inhibitory activity against SARS-CoV-2 viral Mpro. In this study, 24 active compounds from black seed were tested. Compounds were screened using Lipinski's Rules and admetSAR, then docked to viral Mpro 7BQY by AutoDockTools-1.5.6 and AutoDock Vina using a site directed docking approach resulting in affinity energy (∆G) and binding data. We found that the most potential active compound of N. sativa is 3-[(4-Methylphenyl)sulfanyl]-1,3-diphenyl-1-propanone, since its affinity energy was -7.6 kCal.mol-1. Its similarity to N3 inhibitor based on Ligplot analysis and DS were 86.7% and 76.19%, respectively, and the occupancy on binding site based on Ligplot analysis and DS were 90.91% and 81.82%, respectively. These findings can be used as a starting point for further investigation using in vitro and in vivo studies. 


Sign in / Sign up

Export Citation Format

Share Document