scholarly journals Inhibitory Potential Of Black Seed (Nigella Sativa L.) Bioactive Compounds Towards Main Protease Of SARS-CoV-2 : In Silico Study

2021 ◽  
Vol 24 (2) ◽  
pp. 81
Author(s):  
Pamungkas Rizki Ferdian ◽  
Rizki Rabeca Elfirta ◽  
Qori Emilia ◽  
Azra Zahrah Nadhirah Ikhwani

COVID-19, caused by SARS-CoV-2, has become a massive worldwide concern of the 21st century. One potential strategy to block the biochemical pathway of SARS-CoV-2 was by inhibiting the main protease (Mpro), which is a key enzyme on viral replication. Black seed (Nigella sativa L.) has a long history for its use as a traditional medicine. Therefore, we hypothesised that the black seed contains numerous active compounds that could potentially confer inhibitory activity against SARS-CoV-2 viral Mpro. In this study, 24 active compounds from black seed were tested. Compounds were screened using Lipinski's Rules and admetSAR, then docked to viral Mpro 7BQY by AutoDockTools-1.5.6 and AutoDock Vina using a site directed docking approach resulting in affinity energy (∆G) and binding data. We found that the most potential active compound of N. sativa is 3-[(4-Methylphenyl)sulfanyl]-1,3-diphenyl-1-propanone, since its affinity energy was -7.6 kCal.mol-1. Its similarity to N3 inhibitor based on Ligplot analysis and DS were 86.7% and 76.19%, respectively, and the occupancy on binding site based on Ligplot analysis and DS were 90.91% and 81.82%, respectively. These findings can be used as a starting point for further investigation using in vitro and in vivo studies. 

2015 ◽  
Vol 55 (6) ◽  
pp. 736 ◽  
Author(s):  
F. Klevenhusen ◽  
K. Deckardt ◽  
Ö. Sizmaz ◽  
S. Wimmer ◽  
A. Muro-Reyes ◽  
...  

Plant bioactive compounds are currently viewed as possible feed additives in terms of methane mitigation and improvement of ruminal fermentation. A range of analyses, including the botanical characterisation, chemical composition and in vitro efficiency, have to be conducted before testing the compounds in vivo. Therefore, the aims of this study were (1) to identify the main bioactive components of black seed (Nigella sativa) oil (BO) and of the root powder of Ferula elaeochytris (FE), and (2) to investigate their effects on ruminal fermentation in vitro, when supplemented in different dosages to a diet (1 : 1, forage : concentrate), using the rumen simulation technique (Rusitec). Main compounds of BO were thymoquinone and p-cymene and α-pinene in FE. Supplementation of the diet with BO and FE did not affect concentration of volatile fatty acids but ammonia concentrations decreased with both supplements (P < 0.001). No effects of supplements on protozoal counts were detected but in vitro disappearance of DM and organic matter tended to increase with 50 mg/L FE (P < 0.1), compared with the control.


2021 ◽  
Vol 9 (Spl-2-ICOPMES_2020) ◽  
pp. S208-S214
Author(s):  
Novi Yantih ◽  
◽  
Uthami Syabillawati ◽  
Esti Mulatsari ◽  
Wahono Sumaryono ◽  
...  

Diseases caused by the coronavirus have become an important concern in early 2020. The coronavirus is a new type of virus that is included in the SARS-CoV-2 group. One of the possible mechanisms of SARS-CoV-2 inhibition involves protease receptors inhibition. This research was aimed to in silico screening of Ziziphus spina-christi (L.) Desf., and Strychnos ligustrine active ingredients as the main protease inhibitors of SARS-CoV-2 by assessing the ligand-binding affinity in the binding pocket of SARS-CoV-2 main protease protein. The molecular docking method is generally used to predict the inhibitory site and bonds formation. In the current study, some generally used antiviral compounds from the PDB (Protein Data Bank) were also used to compare the affinity strength of the test compound against the protease receptor (code of 5R7Y). The inhibitory activity against the main protease receptor proven by the ChemPLP score is more negative than the receptor’s native ligand and the comparison compounds. Jubanine B, a compound of Z. spina-christi has the most robust inhibition activity on the SARS-CoV-2 protease receptor. Results of this study can be concluded that this can be used to develop as a candidate for traditional medicine against SARS-CoV-2 but still it required some more in vitro and in vivo studies.


Author(s):  
Samira Makanjuola ◽  
Olajuwon Okubena ◽  
Louis Ajonuma ◽  
Adedoyin Dosunmu ◽  
Solomon Umukoro ◽  
...  

The West-African variety of&nbsp;Sorghum bicolor&nbsp;leaf sheath (SBLS) Jobelyn&reg;&nbsp;is a natural remedy,&nbsp;which has gained international recognition for its anti-anemic effect and energy boosting qualities in debilitating diseases.&nbsp;The widespread use of traditional medicine in the region usually confirms its safety, but not its efficacy or deep assessment of their pharmacological properties. The other major issue for herbal-based treatments is the lack of definite and complete information about the composition of the extracts.&nbsp;&nbsp;Despite limitations, efforts have been made in isolation and characterisation of active compounds in this specie of&nbsp;sorghum&nbsp;showing various&nbsp;subclasses of flavonoids including apigeninidin, a stable 3-deoxyanthocyanidin and potential fungal growth inhibitor, which accounts for 84% of the total extract.&nbsp;Non-clinical in vitro and in vivo studies support previous indications that this variety of&nbsp;Sorghum bicolor&nbsp;possesses several biologically active compounds with potent antioxidant, anti-inflammatory, anti-aging and neuro-protective properties.&nbsp; Clinical studies show that&nbsp;SBLS has the ability&nbsp;to boost&nbsp;hemoglobin concentrations in anemic conditions and most remarkably to increase CD4 count in HIV-positive patients. The multiple effects and high safety profiles of this extract may encourage its development as a therapeutic agent for the treatment of anemia, chronic inflammatory conditions or in the symptomatic management of HIV infections.&nbsp;This review describes&nbsp;the potential therapeutic aspects&nbsp;of SBLS extract&nbsp;and its potential benefits.


2021 ◽  
Vol 14 (12) ◽  
pp. 1337
Author(s):  
Akhtar Ali ◽  
YoungJoon Park ◽  
Jeonghoon Lee ◽  
Hyo-Jin An ◽  
Jong-Sik Jin ◽  
...  

Osteoarthritis (OA) is a common degenerative joint disorder that affects joint function, mobility, and pain. The release of proinflammatory cytokines stimulates matrix metalloproteinases (MMPs) and aggrecanase production which further induces articular cartilage degradation. Hypertrophy-like changes in chondrocytes are considered to be an important feature of OA pathogenesis. A Glycyrrhiza new variety, Wongam (WG), was developed by the Korea Rural Development Administration to enhance the cultivation and quality of Glycyrrhizae Radix et Rhizoma (licorice). This study examined the regulatory effect of WG against hypertrophy-like changes such as RUNX2, Collagen X, VEGFA, MMP-13 induction, and Collagen II reduction induced by IL-1β in SW1353 human chondrocytes. Additionally, in silico methods were performed to identify active compounds in licorice to target chondrocyte hypertrophy-related proteins. WG showed inhibitory effects against IL-1β-induced chondrocyte hypertrophy by regulating both HDAC4 activation via the PTH1R/PKA/PP2A pathway and the SOX9/β-catenin signaling pathway. In silico analysis demonstrated that 21 active compounds from licorice have binding potential with 11 targets related to chondrocyte hypertrophy. Further molecular docking analysis and in vivo studies elicited four compounds. Based on HPLC, isoliquiritigenin and its precursors were identified and quantified. Taken together, WG is a potential therapeutic agent for chondrocyte hypertrophy-like changes in OA.


Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1665
Author(s):  
Moustafa S. Ghanem ◽  
Fiammetta Monacelli ◽  
Alessio Nencioni

Nicotinamide adenine dinucleotide (NAD) is an essential redox cofactor, but it also acts as a substrate for NAD-consuming enzymes, regulating cellular events such as DNA repair and gene expression. Since such processes are fundamental to support cancer cell survival and proliferation, sustained NAD production is a hallmark of many types of neoplasms. Depleting intratumor NAD levels, mainly through interference with the NAD-biosynthetic machinery, has emerged as a promising anti-cancer strategy. NAD can be generated from tryptophan or nicotinic acid. In addition, the “salvage pathway” of NAD production, which uses nicotinamide, a byproduct of NAD degradation, as a substrate, is also widely active in mammalian cells and appears to be highly exploited by a subset of human cancers. In fact, research has mainly focused on inhibiting the key enzyme of the latter NAD production route, nicotinamide phosphoribosyltransferase (NAMPT), leading to the identification of numerous inhibitors, including FK866 and CHS-828. Unfortunately, the clinical activity of these agents proved limited, suggesting that the approaches for targeting NAD production in tumors need to be refined. In this contribution, we highlight the recent advancements in this field, including an overview of the NAD-lowering compounds that have been reported so far and the related in vitro and in vivo studies. We also describe the key NAD-producing pathways and their regulation in cancer cells. Finally, we summarize the approaches that have been explored to optimize the therapeutic response to NAMPT inhibitors in cancer.


Author(s):  
OLUWASEUN TAOFEEK

The novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) responsible for the 2019 coronavirus disease (COVID-19) has caused a global health challenge. The SARS-COV-2 main protease, 3CLpro/Mpro plays a critical role in the viral gene expression and replication and has been a major target for inhibiting viral maturation and enhancing host innate immune responses against COVID-19. In this study, we screened a library of 38 phytochemicals from Nigella sativa (blackseed), Trigonella foenum-graecum (Fenugreek) and Anona muricata (Soursop) potent medicinal plants with reported antiviral properties - in a molecular docking protocol on 3CLpro using Autodock4.0 tool implanted in PyRx followed by docking validation and insilico absorption, distribution, metabolism, excretion, and toxicology (ADMET) evaluations. The docking results were visualized using Accelrys Discovery Studio and Pymol software. Among the 38 ligands screened, 19 showed significant interaction through non-covalent hydrogen bonding, hydrophobic, and electrostatic interactions with binding affinities from -5.3kcal/mol to -8.1kcal/mol indicating significant binding interactions at the active site binding pocket. Another important interaction observed in the study which mostly involve the transfer of charges was pi-interactions such as Pi-Pi interaction, Pi-Alkyl interaction, Pi-Sulfur interaction, Pi- Sigma, and Pi-Pi stacking. The docking results revealed that phytochemicals from T. foenum-graecum showed more 3CLpro inhibitory potential compared to those from N. sativa and A. muricata. Insilico ADMET evaluations for drug-like and lead-like characteristics however demonstrated that only 8 ligands - apigenin, kaempferol, luteolin, dithymoquinone, naringenine, nornuciferine, quercetin and nigellidine were actually drug-like; showed best activities against 3CLpro, and lack hepatotoxicity effects while none was lead-like. Insilico results of this study further suggested that drug repurposing candidates, remdesivir, indinavir,hydroxychloroquine, chloroquine and ritonavir,exhibited various interactions with 3CLpro. Hence, further in vitro and in vivo studies are proposed.


2021 ◽  
Vol 11 (4-S) ◽  
pp. 86-100
Author(s):  
N ZAHEER AHMED ◽  
DICKY JOHN DAVIS ◽  
NOMAN ANWAR ◽  
ASIM ALI KHAN ◽  
RAM PRATAP MEENA ◽  
...  

COVID-19 was originated in Wuhan, China, in December 2019 and has been declared a pandemic disease by WHO. The number of infected cases continues unabated and so far, no specific drug approved for targeted therapy. Hence, there is a need for drug discovery from traditional medicine. Tiryaq-e-Wabai is a well-documented formulation in Unani medicine for its wide use as prophylaxis during epidemics of cholera, plague and other earlier epidemic diseases. The objective of the current study is to generate in-silico evidence and evaluate the potency of Tiryaq-e-Wabai against SARS-CoV-2 spike (S) glycoprotein and main protease (3CLpro). The structures of all phytocompounds used in this study were retrieved from PubChem database and some were built using Marvin Sketch. The protein structure of the SARS-CoV-2 S glycoprotein and 3CLpro was retrieved from the PDB ID: 6LZG and 7BQY respectively. AutoDock Vina was used to predict top ranking poses with best scores. The results of the molecular docking showed that phytocompounds of Tiryaq-e-Wabai exhibited good docking power with spike glycoprotein and 3CLpro. Among tested compounds Crocin from Zafran and Aloin A from Sibr showed strong binding to spike glycoprotein and 3CLpro respectively. Molecular dynamics simulation confirmed the stability of the S glycoprotein-Crocin and 3CLpro-Aloin A complexes. The Unani formulation Tiryaq-e-Wabai has great potential to inhibit the SARS-CoV-2, which have to be substantiated with further in-vitro and in-vivo studies. Keywords: In-silico study, SARS-CoV-2, Tiryaq-e-Wabai, Unani formulation, Crocin, Aloin A


2021 ◽  
Vol 22 (6) ◽  
pp. 3101
Author(s):  
João P. Novo ◽  
Beatriz Martins ◽  
Ramon S. Raposo ◽  
Frederico C. Pereira ◽  
Reinaldo B. Oriá ◽  
...  

Methylmercury (MeHg) toxicity is a major environmental concern. In the aquatic reservoir, MeHg bioaccumulates along the food chain until it is consumed by riverine populations. There has been much interest in the neurotoxicity of MeHg due to recent environmental disasters. Studies have also addressed the implications of long-term MeHg exposure for humans. The central nervous system is particularly susceptible to the deleterious effects of MeHg, as evidenced by clinical symptoms and histopathological changes in poisoned humans. In vitro and in vivo studies have been crucial in deciphering the molecular mechanisms underlying MeHg-induced neurotoxicity. A collection of cellular and molecular alterations including cytokine release, oxidative stress, mitochondrial dysfunction, Ca2+ and glutamate dyshomeostasis, and cell death mechanisms are important consequences of brain cells exposure to MeHg. The purpose of this review is to organize an overview of the mercury cycle and MeHg poisoning events and to summarize data from cellular, animal, and human studies focusing on MeHg effects in neurons and glial cells. This review proposes an up-to-date compendium that will serve as a starting point for further studies and a consultation reference of published studies.


Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2611 ◽  
Author(s):  
Muhammad Taher ◽  
Siti Syazwani Shaari ◽  
Deny Susanti ◽  
Dayar Arbain ◽  
Zainul Amiruddin Zakaria

Almost 50 species of Ophiorrhiza plants were reviewed in this work and the main objective is to critically analyse their distribution, phytochemical content, biological activity, and propagation. Moreover, the information would be useful in promoting the relevant uses of the plant, especially in the medicinal fields based on in vitro and in vivo studies. To this end, scientific sources, including theses, PubMed, Google Scholar, International Islamic University Malaysia IIUM EBSCO, PubChem, and Elsevier, were accessed for publications regarding the Ophiorrhiza genus in this review. Scientific literature regarding the Ophiorrhiza plants revealed their wide distribution across Asia and the neighbouring countries, whereby they were utilised as traditional medicine to treat various diseases. In particular, various active compounds, such as alkaloids, flavonoids, and terpenoids, were reported in the plant. Furthermore, the Ophiorrhiza species showed highly diverse biological activities, such as anti-cancer, antiviral, antimicrobial, and more. The genus propagation reported could produce a high quality and quantity of potent anticancer compound, namely camptothecin (CPT). Hence, it is believed that the relevant uses of natural compounds present in the plants can replace the existing crop of synthetic anticancer drugs associated with a multitude of unbearable side effects. Additionally, more future studies on the Ophiorrhiza species should be undertaken to establish the links between its traditional uses, active compounds, and pharmacological activities reported.


2020 ◽  
Vol 21 (3) ◽  
Author(s):  
Katarzyna Antoniak ◽  
Marlena Dudek-Makuch ◽  
Wiesława Bylka

Licorice has been used in medicine from ancient times. Licorice preparations are applied in infectious diseases of the respiratory tract, peptic and duodenal ulcers, as well as in skin diseases and cosmetology. Sweet taste of root has appointed licorice role of corrigens. Licorice root contains active compounds with different activities: saponins, flavonoids, coumarins and essential oil. In vitro and in vivo studies have shown that extracts of licorice and its active compounds have different properties, such as expectorant, antitussive, antibacterial, anti-inflammatory and hepatoprotective.


Sign in / Sign up

Export Citation Format

Share Document