scholarly journals Influence of different morphological parts of buckwheat (Fagopyrum esculentum) and its major secondary metabolite rutin on rumen fermentation in vitro

2012 ◽  
Vol 57 (No. 1) ◽  
pp. 10-18 ◽  
Author(s):  
F. Leiber ◽  
C. Kunz ◽  
M. Kreuzer

It was hypothesized that buckwheat, especially its flowers, influences foregut fermentation in ruminant animals because it is rich in phenolic compounds. The entire fresh aerial buckwheat herb, or its parts (leaves, stems, flowers and grain), were incubated for 24 h together with pure ryegrass (1:1, dry matter basis) in an in vitro ruminal fermentation system (Hohenheim Gas Test). Additionally ryegrass, supplemented with 0, 0.5, 5, or 50 mg rutin trihydrate/g dry matter, was incubated. Contents of extractable phenols (g/kg dry matter) were the highest in buckwheat flowers (88), followed by leaves (63), and the lowest in ryegrass (8). The levels of production of total gas and volatile fatty acids demonstrated that the nutritional value of buckwheat was slightly lower than that of ryegrass. Compared to ryegrass alone, ruminal transformation of dietary protein-N <br />into ammonia was lower with 50 mg rutin, buckwheat flowers and buckwheat leaves. Thus, these treatments appeared to have partly protected dietary protein from ruminal degradation. Rutin, at the highest level, buckwheat flowers and the total aerial fraction of the buckwheat plant suppressed methane per unit of total gas by &gt; 10%, either at elevated (rutin) or reduced total gas volume. This indicates that the ways of the influence on the ruminal fermentation pattern differed between pure rutin and buckwheat. In vivo studies have to confirm these potentially beneficial effects of buckwheat if used as forage for ruminants and clarify the role of further phenolic compounds present in buckwheat. Abbreviations: DM = dry matter, HGT = Hohenheim Gas Test, NDF = neutral detergent fibre, TEP = total extractable phenols, VFA = volatile fatty acids

2012 ◽  
Vol 17 (1) ◽  
pp. 51-63 ◽  
Author(s):  
S Marlene Grenon ◽  
Millie Hughes-Fulford ◽  
Joseph Rapp ◽  
Michael S Conte

There is substantial evidence that polyunsaturated fatty acids (PUFAs) such as n-3 and n-6 fatty acids (FAs) play an important role in prevention of atherosclerosis. In vitro and in vivo studies focusing on the interactions between monocytes and endothelial cells have explored the molecular effects of FAs on these interactions. Epidemiological surveys, followed by large, randomized, control trials have demonstrated a reduction in major cardiovascular events with supplementation of n-3 FAs in secondary prevention settings. The evidence of beneficial effects specific to patients with peripheral artery disease (PAD) remains elusive, and is the focus of this review.


Author(s):  
O. Vozna ◽  
N. Motko

Three groups of rabbits of different origin (29, 27 and 28 animals; 3 or 4–6 months of age) were slaughtered, their caecal contents analyzed and used for inoculation of in vitro cultures. Whereas the caecal pH, dry matter percentages and acetate molar proportions in caecal volatile fatty acids (VFA) were relatively stable, molar proportions of other VFA varied considerably. In in vitro incubations, caecal parameters varied somewhat less than in vivo. Methane production varied much more than total VFA production. No non-methanogenic rabbit, however, was found. The hydrogen recovery correlated Significantly with the methane production and, in two out of three groups of rabbits, also with the propionate molar percentage. The caecal pH was inversely related to VFA concentration.


2021 ◽  
Author(s):  
Lucienne Gatt ◽  
Pierre Schembri Wismayer

Leukaemia is the most common cancer in children under 15 years of age as well as the most common blood cancer in people older than 55. The use of all trans retinoic acid (ATRA) in combination with arsenic trioxide (ATO) for acute promyelocytic leukaemia (APL) and tyrosine kinase inhibitors for chronic myeloid leukaemia (CML) respectively, have improved survival rates. However, new, natural therapies are constantly being sought after to overcome issues with resistance, side effects and specificity. As a result of their range of health benefits, including anticancer properties, phenolic compounds have been extensively studied over the past two decades. One on hand, in vitro and in vivo studies highlight both the inhibitory as well as differentiation inducing effects of phenolics on different leukaemia types. On the other hand, clinical trials to date have shown their beneficial effects (decrease in the absolute lymphocyte count and lymphadenopathy) in CLL (Chronic lymphoblastic leukaemia) patients. Promising therapeutic candidates for future use include epigallocatechin-3-gallate, coumarin, and gallic acid, with the latter ideally used in combination with the conventional drugs daunorubicin and cytarabine.


2018 ◽  
Vol 15 (6) ◽  
pp. 531-543 ◽  
Author(s):  
Dominik Szwajgier ◽  
Ewa Baranowska-Wojcik ◽  
Kamila Borowiec

Numerous authors have provided evidence regarding the beneficial effects of phenolic acids and their derivatives against Alzheimer's disease (AD). In this review, the role of phenolic acids as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) is discussed, including the structure-activity relationship. In addition, the inhibitory effect of phenolic acids on the formation of amyloid β-peptide (Aβ) fibrils is presented. We also cover the in vitro, ex vivo, and in vivo studies concerning the prevention and treatment of the cognitive enhancement.


2021 ◽  
Vol 14 (4) ◽  
pp. 336
Author(s):  
Annalisa Noce ◽  
Maria Albanese ◽  
Giulia Marrone ◽  
Manuela Di Lauro ◽  
Anna Pietroboni Zaitseva ◽  
...  

The Coronavirus Disease-19 (COVID-19) pandemic has caused more than 100,000,000 cases of coronavirus infection in the world in just a year, of which there were 2 million deaths. Its clinical picture is characterized by pulmonary involvement that culminates, in the most severe cases, in acute respiratory distress syndrome (ARDS). However, COVID-19 affects other organs and systems, including cardiovascular, urinary, gastrointestinal, and nervous systems. Currently, unique-drug therapy is not supported by international guidelines. In this context, it is important to resort to adjuvant therapies in combination with traditional pharmacological treatments. Among natural bioactive compounds, palmitoylethanolamide (PEA) seems to have potentially beneficial effects. In fact, the Food and Drug Administration (FDA) authorized an ongoing clinical trial with ultramicronized (um)-PEA as an add-on therapy in the treatment of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection. In support of this hypothesis, in vitro and in vivo studies have highlighted the immunomodulatory, anti-inflammatory, neuroprotective and pain-relieving effects of PEA, especially in its um form. The purpose of this review is to highlight the potential use of um-PEA as an adjuvant treatment in SARS-CoV-2 infection.


2021 ◽  
Vol 11 (5) ◽  
pp. 336
Author(s):  
Mohammed Ghiboub ◽  
Ahmed M. I. Elfiky ◽  
Menno P. J. de Winther ◽  
Nicola R. Harker ◽  
David F. Tough ◽  
...  

Histone deacetylases (HDACs) and bromodomain-containing proteins (BCPs) play a key role in chromatin remodeling. Based on their ability to regulate inducible gene expression in the context of inflammation and cancer, HDACs and BCPs have been the focus of drug discovery efforts, and numerous small-molecule inhibitors have been developed. However, dose-limiting toxicities of the first generation of inhibitors, which typically target multiple HDACs or BCPs, have limited translation to the clinic. Over the last decade, an increasing effort has been dedicated to designing class-, isoform-, or domain-specific HDAC or BCP inhibitors, as well as developing strategies for cell-specific targeted drug delivery. Selective inhibition of the epigenetic modulators is helping to elucidate the functions of individual epigenetic proteins and has the potential to yield better and safer therapeutic strategies. In accordance with this idea, several in vitro and in vivo studies have reported the ability of more selective HDAC/BCP inhibitors to recapitulate the beneficial effects of pan-inhibitors with less unwanted adverse events. In this review, we summarize the most recent advances with these strategies, discussing advantages and limitations of these approaches as well as some therapeutic perspectives, focusing on autoimmune and inflammatory diseases.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 761
Author(s):  
Olinda Guerreiro ◽  
Susana P. Alves ◽  
Mónica Costa ◽  
Maria F. Duarte ◽  
Eliana Jerónimo ◽  
...  

Cistus ladanifer (rockrose) is a perennial shrub quite abundant in the Mediterranean region, and it is a rich source in secondary compounds such as condensed tannins (CTs). Condensed tannins from C. ladanifer were able to change the ruminal biohydrogenation (BH), increasing the t11–18:1 and c9,t11–18:2 production. However, the adequate conditions of the C. ladanifer CTs used to optimize the production of t11–18:1 and c9,t11–18:2 is not yet known. Thus, we tested the effect of increasing the doses of C. ladanifer CT extract (0, 25, 50, 75 and 100 g/kg dry matter (DM)) on in vitro rumen BH. Five in vitro batch incubations replicates were conducted using an oil supplemented high-concentrate substrate, incubated for 24 h with 6 mL of buffered ruminal fluid. Volatile fatty acids (VFAs) and long chain fatty acids (FA) were analyzed at 0 h and 24 h, and BH of c9–18:1, c9, c12–18:2 and c9, c12, c15–18:3, and BH products yield were computed. Increasing doses of C. ladanifer CTs led to a moderate linear decrease (p < 0.001) of the VFA production (a reduction of 27% with the highest dose compared to control). The disappearance of c9–18:1 and c9,c12–18:2 as well as the production of t11–18:1 and c9, t11:18:2 was not affected by increasing doses of C. ladanifer CTs, and only the disappearance of c9, c12, c15–18:3 suffered a mild linear decrease (a reduction of 24% with the highest dose compared to control). Nevertheless, increasing the C. ladanifer CT dose led to a strong depression of microbial odd and branched fatty acids and of dimethyl acetals production (less than 65% with the highest dose compared to control), which indicates that microbial growth was more inhibited than fermentative and biohydrogenation activities, in a possible adaptative response of microbial population to stress induced to CTs and polyunsaturated fatty acids. The ability of C. ladanifer to modulate the ruminal BH was not verified in the current in vitro experimental conditions, emphasizing the inconsistent BH response to CTs and highlighting the need to continue seeking the optimal conditions for using CTs to improve the fatty acid profile of ruminant fat.


2020 ◽  
Vol 9 ◽  
pp. 1743
Author(s):  
Solmaz Rahmani Barouji ◽  
Amir Saber ◽  
Mohammadali Torbati ◽  
Seyyed Mohammad Bagher Fazljou ◽  
Ahmad Yari Khosroushahi

raditional medicine (TM) that developed over the years within various societies consists of medical experimental knowledge and practices, which apply natural methods and compounds for general wellness and healing. Moomiaii as a pale-brown to blackish-brown natural exudate is one of the natural compounds in traditional medicine that has been used over 3000 years in many countries of the world especially in India, China, Russia, Iran, Mongolia, Kazakhstan and Kirgizstan. We reviewed all English-language studies about Moomiaii that we accessed them. In traditional medicine, many beneficial activities have been attributed to Moomiaii and to its main constituents, Humic acid and Fulvic acid, which are widely used to prevent and treatment of different diseases. Some modern scientific investigations showed that Moomiaii as a safe dietary supplement can be beneficial in various health complications. Even though the beneficial effects of Moomiaii have been confirmed in traditional and modern medicine, it seems that additional in-vitro/in-vivo studies and comprehensive clinical trials are necessary to explain the whole mechanisms of action and to determine the effective doses in various diseases. We discuss and clarify the claimed health beneficial effects of Moomiaii in some wide-spread diseases regarding its anti-ulcerogenic, immunomodulatory, antidiabetic, antioxidative and anticancer properties. [GMJ.2020;9:e1743]


2013 ◽  
Vol 101 (9) ◽  
pp. 585-593 ◽  
Author(s):  
M. Ozkan ◽  
F. Z. Biber Muftuler ◽  
A. Yurt Kilcar ◽  
E. I. Medine ◽  
P. Unak

Summary It is known that medicinal plants like olive have biological activities due to their flavonoid content such as olueropein, tyrosol, hydroxytyrosol etc. In current study, hydroxytrosol (HT) which is one of the major phenolic compounds in olive, olive leaves and olive oil, was isolated after methanol extraction and purification of olive leaves which are grown in the northern Anatolia region of Turkey. The isolated HT was radiolabeled with 131I (131I-HT) and the bioaffinity of this radiolabeled component of olive leaves extract was investigated by using in vivo/in vitro methods. It was found that HT could be radiolabeled with 131I in yields of 95.6±4.4% (n = 8), and in vivo studies showed that 131I-HT is taken up by urinary bladder, stomach, small intestine, large intestine, breast and prostate. Significant incorporation of activity was observed in cell lines via in vitro studies.


2019 ◽  
Vol 20 (6) ◽  
pp. 1381 ◽  
Author(s):  
Adele Chimento ◽  
Francesca De Amicis ◽  
Rosa Sirianni ◽  
Maria Sinicropi ◽  
Francesco Puoci ◽  
...  

Resveratrol (3,5,4′-trihydroxystilbene; RSV) is a natural nonflavonoid polyphenol present in many species of plants, particularly in grapes, blueberries, and peanuts. Several in vitro and in vivo studies have shown that in addition to antioxidant, anti-inflammatory, cardioprotective and neuroprotective actions, it exhibits antitumor properties. In mammalian models, RSV is extensively metabolized and rapidly eliminated and therefore it shows a poor bioavailability, in spite it of its lipophilic nature. During the past decade, in order to improve RSV low aqueous solubility, absorption, membrane transport, and its poor bioavailability, various methodological approaches and different synthetic derivatives have been developed. In this review, we will describe the strategies used to improve pharmacokinetic characteristics and then beneficial effects of RSV. These methodological approaches include RSV nanoencapsulation in lipid nanocarriers or liposomes, nanoemulsions, micelles, insertion into polymeric particles, solid dispersions, and nanocrystals. Moreover, the biological results obtained on several synthetic derivatives containing different substituents, such as methoxylic, hydroxylic groups, or halogens on the RSV aromatic rings, will be described. Results reported in the literature are encouraging but require additional in vivo studies, to support clinical applications.


Sign in / Sign up

Export Citation Format

Share Document