Effect of rhubarb (Rheum spp.) root on in vitro and in vivo ruminal methane production and a bacterial community analysis based on 16S rRNA sequence

2016 ◽  
Vol 56 (3) ◽  
pp. 402 ◽  
Author(s):  
Kyoung Hoon Kim ◽  
Selvaraj Arokiyaraj ◽  
Jinwook Lee ◽  
Young Kyoon Oh ◽  
Ho Young Chung ◽  
...  

The objective of this study was to evaluate the anti-methanogenic effect of rhubarb (Rheum spp.) on in vitro, in vivo, and bacterial community composition using Quantitative Insights into Microbial Ecology sequencing. Rhubarb root powder was tested at different concentrations (0, 0.33, 0.67, and 1.33 g/L) in vitro, and all incubations were carried out in triplicate two runs on separate days. Concentrations of 0.67 and 1.33 g/L rhubarb significantly (P < 0.05) reduced methane production and the acetate : propionate ratio compared with those of the Control, without adverse effects on total volatile fatty acids and total gas production. In the second in vivo trial, four Hanwoo (Korean native) steers (live bodyweight, 556 ± 46 kg) with a ruminal cannula were housed individually in metabolic stalls and fed a basal diet twice daily in equal amounts at 0900 hours and 2100 hours. The before rhubarb treatment (before treatment) duration was 24 days for all steers; 14 days were used for diet adaptation and 10 days were used for gas samples collected 1, 2, and 3 h after the morning feeding on Days 3, 5, 7, and 9. We used three syringe needles passed through the ruminal cannula stopper at different time points as a simple and rapid method to sample rumen gas. Thereafter, three mesh bags containing 30 g of sliced rhubarb root each were placed at different depths in the rumen of each steer for 14 days (after treatment), and gas samples were collected on Days 4, 7, 10, 12, and 13. The results showed a significant (P < 0.05) decrease in methane concentration from the rhubarb-treated steers and provide the evidence that this method would be useful for in vivo screening of anti-methanogenic feed additives or plant material. Furthermore, 16s RNA sequencing after treatment showed increases in the numbers of Prevotella, and Lactobacillus, but decreases in Methanobrevibacter. In conclusion, rhubarb had an anti-methanogenic effect in vitro and in vivo, and the increase in the number of Prevotella shifted ruminal fermentation towards propionate production.

2016 ◽  
Vol 56 (3) ◽  
pp. 641 ◽  
Author(s):  
Z. Durmic ◽  
P. J. Moate ◽  
J. L. Jacobs ◽  
J. Vadhanabhuti ◽  
P. E. Vercoe

A study was conducted to examine in vitro ruminal fermentation profiles and methane production of some alternative forage species (n = 10) in Australia. Extent of fermentation was assessed using an in vitro batch fermentation system, where total gas production, methane production, and concentrations in ruminal fluid of volatile fatty acids (VFA) and ammonia were measured. Forages varied in their fermentability, with highest total gas, methane, VFA and ammonia production recorded from selected samples of Brassica napus L. cv. Winfred. Lowest methane production (i.e. 30% less than that formed by the highest-producing one) was observed in Plantago lanceolata L. cv. Tonic and Cichorium intybus L. cv. Choice. Selected plants, including P. lanceolata L. cv. Tonic, Brassica rapa L. cv. Marco, Brassica napus L. cv. Hunter had reduced acetate : propionate ratio and/or ammonia concentration, along with relatively low methane production compared with other species tested, while overall fermentation was not affected. It was concluded that selected novel forages have some advantageous fermentability profiles in the rumen and, in particular, inhibit methane production. However, before these can be recommended as valuable supplementary feedstuffs for ruminants in Australia, further studies are needed to confirm these effects over a range of samples, conditions and in vivo.


Fermentation ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 109
Author(s):  
Sukruthai Sommai ◽  
Anusorn Cherdthong ◽  
Chanon Suntara ◽  
Sarong So ◽  
Metha Wanapat ◽  
...  

Two experiments were conducted under this study: Experiment 1 was to study production yield, chemical composition, and in vitro degradability of Brazilian spinach (Alternanthera sissoo; BS) leaf and leaf + leaf-stalk at various maturity ages of 15, 30, 45, and 60 days after plantation and regrowth and Experiment 2 was to evaluate the effect of flavonoid extract from BS leaf and leaf + leaf-stalk and dietary ratios on ruminal gas production, fermentation characteristics, and in vitro degradability. Experiment 1 showed that maturity ages after planting and regrowth increased, the yield significantly increased. Increasing maturity ages significantly (p < 0.05) increased neutral detergent fiber and acid detergent fiber content and decreased crude protein content, total flavonoid (TF) content, and degradability for both leaf and leaf + leaf-stalk. Maturity ages from 15 to 30 days after plantation and regrowth resulted (p < 0.05) the highest TF content and degradability for both leaf and leaf + leaf-stalk. Thus, BS leaf and leaf + leaf-stalk samples from 15 to 30 days of age were used for flavonoid extraction and used in the Experiment 2. Experiment 2 was conducted according to a 3 × 5 factorial experiment. Three roughage to concentrate (R:C) ratios at 50:50, 40:60, and 30:70 were used, and five levels of flavonoid extract (FE) at 0, 10, 20, 30, and 40 mg of substrate dry matter (DM) were supplemented. Experiment 2 showed that R:C ratio and FE had an interaction effect only on acetate to propionate ratio. Varying R:C ratios significantly increased (p < 0.05) in vitro DM degradability, total volatile fatty acids (VFA), and propionate (C3) concentration. FE supplementation linearly (p < 0.05) increased total VFA and C3 concentration and decreased methane production and protozoal population. This study could conclude that FE from BS could effectively modulate ruminal fermentation and decrease methane production. However, in vivo study needs to elucidate in order to validate the present results.


Animals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 79 ◽  
Author(s):  
Vibeke Lind ◽  
Martin R. Weisbjerg ◽  
Grete M. Jørgensen ◽  
Júlia E. Fernandez-Yepes ◽  
Lesly Arbesú ◽  
...  

The aim of the present work was to investigate the potential of Porphyra sp. as an alternative source of protein to soybean meal in diets for sheep. Our experimental treatments included a control diet (CON) based on grass silage and crushed oats and three diets containing protein supplements, clover silage (CLO), soybean meal (SOY) or Porphyra sp. (POR) to increase dietary crude protein concentrations. We studied its effects on rumen fermentation, growth rate and methane emissions. Ruminal fermentation characteristics, kinetics of gas production and methane production were studied in vitro by using batch cultures inoculated with rumen inoculum from sheep. There were no differences among diets in total volatile fatty acids (VFA) production or in the VFA profile in vitro. Across treatments, we measured no differences in methane production either in vitro or in vivo, and we saw no noticeable antimethanogenic effect of Porphyra sp. The present in vivo trial with lambs showed no differences in average daily weight gain when fed diets including Porphyra sp. or soybean meal diets (250 and 254 g/d, respectively). We conclude that Porphyra sp. has a protein value similar to high-quality protein sources like soybean meal.


1970 ◽  
Vol 46 (3) ◽  
pp. 325-335
Author(s):  
E. Maleki ◽  
G.Y. Meng ◽  
M. Faseleh Jahromi ◽  
R. Jorfi ◽  
A. Khoddami ◽  
...  

The objective of this study was to determine the effect of pomegranate (Punica granatum L.) seed oil (PSO) on gas and methane (CH4) production, ruminal fermentation and microbial populations under in vitro conditions. Three treatments consisting of a control diet containing 10 mg tallow (CON); the control diet with 5 mg PSO + 5 mg tallow (MPSO) and the control diet containing 10 mg PSO (HPSO) were compared. Ten mg of the experimental fat/oil samples were inserted into a gas-tight 100 mL plastic syringe containing 30 mL of an incubation inoculum and 250 mg of a basic substrate of a hay/concentrate (1/1, w/w) mixture. In vitro gas production was recorded over 0, 2, 4, 6, 8, 10, 12 and 24 h of incubation. After 24 hours, incubation was stopped, and methane production, pH, volatile fatty acids (VFAs) and microbial counts were measured in the inoculant. Gas production at 4, 6, 8, 10, 12 and 24 h incubation, metabolizable energy and in vitro organic matter disappearance increased linearly and quadratically as level of PSO increased. Furthermore, the 10 mg PSO (HPSO) decreased CH4 production by 21.0% compared with the control (CON) group. There were no significant differences in total and individual VFA concentrations between different levels of PSO, except for butyric acid. After 24 h of incubation, methanogenesis decreased in the HPSO compared with the MPSO and CON treatments. In addition, total bacteria and protozoa counts increased with rising PSO levels, while population methanogenesis declined significantly. These results suggested that PSO could reduce methane emissions, which might be beneficial to nutrient utilization and growth in ruminants.


2015 ◽  
Vol 55 (6) ◽  
pp. 736 ◽  
Author(s):  
F. Klevenhusen ◽  
K. Deckardt ◽  
Ö. Sizmaz ◽  
S. Wimmer ◽  
A. Muro-Reyes ◽  
...  

Plant bioactive compounds are currently viewed as possible feed additives in terms of methane mitigation and improvement of ruminal fermentation. A range of analyses, including the botanical characterisation, chemical composition and in vitro efficiency, have to be conducted before testing the compounds in vivo. Therefore, the aims of this study were (1) to identify the main bioactive components of black seed (Nigella sativa) oil (BO) and of the root powder of Ferula elaeochytris (FE), and (2) to investigate their effects on ruminal fermentation in vitro, when supplemented in different dosages to a diet (1 : 1, forage : concentrate), using the rumen simulation technique (Rusitec). Main compounds of BO were thymoquinone and p-cymene and α-pinene in FE. Supplementation of the diet with BO and FE did not affect concentration of volatile fatty acids but ammonia concentrations decreased with both supplements (P < 0.001). No effects of supplements on protozoal counts were detected but in vitro disappearance of DM and organic matter tended to increase with 50 mg/L FE (P < 0.1), compared with the control.


2021 ◽  
Author(s):  
Sonny Ramos ◽  
Seon Ho Kim ◽  
Chang Dae Jeong ◽  
Lovelia L. Mamuad ◽  
A-rang Son ◽  
...  

Abstract Background: Rumen bacterial community is mainly affected by the type of diet consumed by the host animals. High concentrate diet increases the abundance of lactic acid producers and utilizers due to high level of non-structural carbohydrates thus reducing the number of fiber-degrading bacteria because of drastic decrease in pH. Dietary buffers are essential in regulating rumen pH through the compounds responsible in resisting drastic decrease in pH once cattle were fed with high-concentrate diet. However, no study has evaluated the effects of buffering capacity and efficiency in alleviating chronic acidosis in rumen. Ruminal metataxonomic and fermentation characteristics analyses were conducted to evaluate the effect of different buffering capacities on in vitro and in vivo experiments in high-concentrate fed Hanwoo steers. Results: Results revealed that BC0.9% and BC0.5% had similar and significant effect (P < 0.05) on in vitro ruminal fermentation at 3 to 24 h incubation. Both BC0.9% and BC0.5% had significantly highest (P < 0.05) buffering capacity, pH, and ammonia-nitrogen (NH3-N) than BC0.3% and CON at 24 h of incubation. Individual and total volatile fatty acids (VFA) were significantly lowest in CON. Increasing buffering capacity concentration showed linear effect on pH at 6 to 24 h while total gas and NH3-N at 3 and 12 h. Phylum Bacteroidetes dominated all treatments but a higher abundance of Firmicutes in BC0.5% than others. Ruminoccocus bromii and Succiniclasticum ruminis were dominant in BC0.5% and Bacteroides massiliensis in BC0.3%. The normalized data of relative abundance of observed OTUs’ representative families have grouped the CON with BC0.3% in the same cluster, whereas BC0.5% and BC0.9% were clustered separately which indicates the effect of varying buffering capacity of buffer agents. Principal coordinate analysis (PCoA) on unweighted UniFrac distances revealed close similarity of bacterial community structures within and between treatments and control, in which BC0.9% and BC0.3% groups showed dispersed community distribution. Conclusion: Our findings showed that increasing buffering capacity enhances rumen fermentation parameters and affects rumen microbiome by altering bacterial community through distinct structure between high and low buffering capacity, thus an important factor contributed to the prevention of ruminal acidosis during a high-concentrate diet.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jia-nan Dong ◽  
Song-ze Li ◽  
Xue Chen ◽  
Gui-xin Qin ◽  
Tao Wang ◽  
...  

High levels of starch is known to have positive effects on both energy supply and milk yield but increases the risk of rumen acidosis. The use of sugar as a non-structural carbohydrate could circumvent this risk while maintaining the benefits, but its effects and that of the simultaneous use of both sugar and starch are not as well-understood. This study aimed to evaluate the effects of different combinations of sugar and starch concentrations on ruminal fermentation and bacterial community composition in vitro in a 4 ×4 factorial experiment. Sixteen dietary treatments were formulated with 4 levels of sugar (6, 8, 10, and 12% of dietary dry matter), and 4 levels of starch (21, 23, 25, and 27% of dietary dry matter). Samples were taken at 0.5, 1, 3, 6, 12, and 24 h after cultivation to determine the disappearance rate of dry matter, rumen fermentation parameters and bacterial community composition. Butyric acid, gas production, and Treponema abundance were significantly influenced by the sugar level. The pH, acetic acid, and propionic acid levels were significantly influenced by starch levels. However, the interactive effect of sugar and starch was only observed on the rate of dry matter disappearance. Furthermore, different combinations of starch and sugar had different effects on volatile fatty acid production rate, gas production rate, and dry matter disappearance rate. The production rate of rumen fermentation parameters in the high sugar group was higher. Additionally, increasing the sugar content in the diet did not change the main phylum composition in the rumen, but significantly increased the relative abundance of Bacteroidetes and Firmicutes phyla, while the relative abundance of Proteobacteria was reduced. At the genus level, the high glucose group showed significantly higher relative abundance of Treponema (P &lt; 0.05) and significantly lower relative abundance of Ruminobacter, Ruminococcus, and Streptococcus (P &lt; 0.05). In conclusion, different combinations of sugar and starch concentrations have inconsistent effects on rumen fermentation characteristics, suggesting that the starch in diets cannot be simply replaced with sugar; the combined effects of sugar and starch should be considered to improve the feed utilization rate.


2020 ◽  
Vol 20 (1) ◽  
pp. 207-218 ◽  
Author(s):  
Ekin Sucu

AbstractThis experiment was conducted to establish the effects of two types of microalgae [Chlorella vulgaris (AI), C. variabilis (AII) and their combination (AI+AII)] with two substrates (wheat and corn silages) on rumen fermentation, gas and methane production. To each substrate, one of 3 algae treatment was supplemented at 0% and 25% of the total incubated dry matter. A series of 5 measurement points (3, 6, 12, 24 and 48 h) were completed and the gas production was monitored. The proximate and mineral composition of microalgae and substrates were examined. At 48 h incubation rumen fermentation variables and CH4 production were also assessed. When compared with wheat silage, corn silage caused an increase in gas production (P<0.05). Ruminal gas production decreased in the algae groups when compared to the controls (0% algae, wheat and corn silages, P<0.05). Among algae, C. vulgaris had the strongest effect, decreasing gas production by 34%. Among algae, the total volatile fatty acids (VFA) and CH4 production were found to be lower in C. variabilis (P<0.001). Ammonia-N increased with the algae inclusion (P<0.05). But, the ruminal gas production, pH, acetate, the total VFA, CH4 and rumen fermentation efficiency were not affected by the substrate and algae interaction (P>0.05). The propionate was the highest (P<0.05) for corn silage when incubated with C. vulgaris. Ruminal butyrate was the lowest for the wheat silage when incubated with the mixture of algae (P<0.05). The NH3-N was the highest in corn silage when incubated with all algae types (P<0.05). Careful selection and combination of substrate and algae may positively manipulate rumen fermentation and may inhibit CH4 production. Further research is needed to validate these results in vivo.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 408-408
Author(s):  
Yamicela Castillo-Castillo ◽  
Raul Solis ◽  
Armando A Quintana ◽  
Claudio Arzola ◽  
Ana Luisa Olivas-Palacios ◽  
...  

Abstract An in vitro incubation was carried out to evaluate the potential of hops (Humulus lupulus) as an alternative to antibiotics for upgrading animal production. Whole pellets of hops (Variety Galena) were ground and incubated in a batch culture of ruminal fluid (2000 mg of ground corn grain + 10 mL of fresh rumen liquor). Ruminal fluid was collected from two beef cows through an esophageal tube. The hops were incubated by 24 h at levels of 0, 800, 1600 and 2400 µg/mL. Data were analyzed statistically by analysis of variance using PROC GLM of SAS. Hops addition linearly decreased (P &lt; 0.01) gas production (GP; 90.89, 61.73, 36.63 and 28.37 µmol/g respectively) and methane production (MP; 9.76, 1.70, 1.30 and 0.46 µmol/g respectively). The CO2 production linearly increased as levels of hops increased (P &lt; 0.02; 87.5, 88.4, 98.1 and 99.3 µmol/g respectively). The ammonia-N production was reduced in treatment 2 with respect to other treatments (P &lt; 0.03; 12.6, 9.2, 13.7 and 13.5 µmol/g). Effects on ruminal fermentation of corn grain were dose dependent of hops. Addition of hops in ruminant feeding may offer a means to decrease ruminal methane production. Further research is needed to test efficacy of hops on other in vivo rumen-fermentation parameters.


2021 ◽  
Vol 33 ◽  
pp. 04009
Author(s):  
Asih Kurniawati ◽  
Muhlisin Muhsin Al Anas

The study was designed to determine the effect of a candidate natural feed additive on the kinetics of gas production as a representation of feed degradability and methane produced during rumen fermentation. Three blends of essential oil (BEO) as candidates for feed additives were formulated using pine and eucalyptus essential oils in the following ratios: 75:25, 50:50, and 25:75 for BEO1, BEO2, and BEO3, respectively. Every BEO was added to the batch fermentation system at dosages of 0, 100, and 200 l/l in the medium. Furthermore, an in vitro gas production technique was used to simulate rumen feed fermentation. According to the gas production kinetics, all BEO additives did not affect the total potential gas produced, as well as the potential gas produced from the soluble and insoluble substrate. The rates of gas production were similar among treatments. Furthermore, the addition of BEO did not affect the total volume of gas produced during fermentation. Meanwhile, BEO1 at 200 l/l dose and BEO 3 at 100 l/l dose significantly reduced methane production (P0.05). In conclusion, the BEO1 and BEO 3 at dosages of 200 and 100 l/l, respectively, had the potential as a feed additive to reduce methane production without a negative effect on nutrient digestibility.


Sign in / Sign up

Export Citation Format

Share Document