Resource use and environmental impacts from Australian export lamb production: a life cycle assessment

2016 ◽  
Vol 56 (7) ◽  
pp. 1070 ◽  
Author(s):  
S. G. Wiedemann ◽  
M.-J. Yan ◽  
C. M. Murphy

This study conducted a life cycle assessment (LCA) investigating energy, land occupation, greenhouse gas (GHG) emissions, fresh water consumption and stress-weighted water use from production of export lamb in the major production regions of New South Wales, Victoria and South Australia. The study used data from regional datasets and case study farms, and applied new methods for assessing water use using detailed farm water balances and water stress weighting. Land occupation was assessed with reference to the proportion of arable and non-arable land and allocation of liveweight (LW) and greasy wool was handled using a protein mass method. Fossil fuel energy demand ranged from 2.5 to 7.0 MJ/kg LW, fresh water consumption from 58.1 to 238.9 L/kg LW, stress-weighted water use from 2.9 to 137.8 L H2O-e/kg LW and crop land occupation from 0.2 to 2.0 m2/kg LW. Fossil fuel energy demand was dominated by on-farm energy demand, and differed between regions and datasets in response to production intensity and the use of purchased inputs such as fertiliser. Regional fresh water consumption was dominated by irrigation water use and losses from farm water supply, with smaller contributions from livestock drinking water. GHG emissions ranged from 6.1 to 7.3 kg CO2-e/kg LW and additional removals or emissions from land use (due to cultivation and fertilisation) and direct land-use change (due to deforestation over previous 20 years) were found to be modest, contributing between –1.6 and 0.3 kg CO2-e/kg LW for different scenarios assessing soil carbon flux. Excluding land use and direct land-use change, enteric CH4 contributed 83–89% of emissions, suggesting that emissions intensity can be reduced by focussing on flock production efficiency. Resource use and emissions were similar for export lamb production in the major production states of Australia, and GHG emissions were similar to other major global lamb producers. The results show impacts from lamb production on competitive resources to be low, as lamb production systems predominantly utilised non-arable land unsuited to alternative food production systems that rely on crop production, and water from regions with low water stress.

2017 ◽  
Vol 57 (6) ◽  
pp. 1149 ◽  
Author(s):  
Stephen Wiedemann ◽  
Rod Davis ◽  
Eugene McGahan ◽  
Caoilinn Murphy ◽  
Matthew Redding

Grain finishing of cattle has become increasingly common in Australia over the past 30 years. However, interest in the associated environmental impacts and resource use is increasing and requires detailed analysis. In this study we conducted a life cycle assessment (LCA) to investigate impacts of the grain-finishing stage for cattle in seven feedlots in eastern Australia, with a particular focus on the feedlot stage, including the impacts from producing the ration, feedlot operations, transport, and livestock emissions while cattle are in the feedlot (gate-to-gate). The functional unit was 1 kg of liveweight gain (LWG) for the feedlot stage and results are included for the full supply chain (cradle-to-gate), reported per kilogram of liveweight (LW) at the point of slaughter. Three classes of cattle produced for different markets were studied: short-fed domestic market (55–80 days on feed), mid-fed export (108–164 days on feed) and long-fed export (>300 days on feed). In the feedlot stage, mean fresh water consumption was found to vary from 171.9 to 672.6 L/kg LWG and mean stress-weighted water use ranged from 100.9 to 193.2 water stress index eq. L/kg LWG. Irrigation contributed 57–91% of total fresh water consumption with differences mainly related to the availability of irrigation water near the feedlot and the use of irrigated feed inputs in rations. Mean fossil energy demand ranged from 16.5 to 34.2 MJ lower heating values/kg LWG and arable land occupation from 18.7 to 40.5 m2/kg LWG in the feedlot stage. Mean greenhouse gas (GHG) emissions in the feedlot stage ranged from 4.6 to 9.5 kg CO2-e/kg LWG (excluding land use and direct land-use change emissions). Emissions were dominated by enteric methane and contributions from the production, transport and milling of feed inputs. Linear regression analysis showed that the feed conversion ratio was able to explain >86% of the variation in GHG intensity and energy demand. The feedlot stage contributed between 26% and 44% of total slaughter weight for the classes of cattle fed, whereas the contribution of this phase to resource use varied from 4% to 96% showing impacts from the finishing phase varied considerably, compared with the breeding and backgrounding. GHG emissions and total land occupation per kilogram of LWG during the grain finishing phase were lower than emissions from breeding and backgrounding, resulting in lower life-time emissions for grain-finished cattle compared with grass finishing.


2018 ◽  
Vol 58 (6) ◽  
pp. 1153 ◽  
Author(s):  
Stephen G. Wiedemann ◽  
Eugene J. McGahan ◽  
Caoilinn M. Murphy

Utilisation of water, energy and land resources is under pressure globally because of increased demand for food, fibre and fuel production. Australian pork production utilises these resources both directly to grow and process pigs, and indirectly via the consumption of feed and other inputs. With increasing demand and higher costs associated with these resources, supply chain efficiency is a growing priority for the industry. This study aimed to quantify fresh water consumption, stress-weighted water use, fossil fuel energy use and land occupation from six case study supply chains and the national herd using a life cycle assessment approach. Two functional units were used: 1 kg of pork liveweight (LW) at the farm-gate, and 1 kg of wholesale pork (chilled, bone-in). At the farm-gate, fresh water consumption from the case study supply chains ranged from 22.2 to 156.7 L/kg LW, with a national average value of 107.5 L/kg LW. Stress-weighted water use ranged from 6.6 to 167.5 L H2O-e /kg LW, with a national average value of 103.2 L H2O-e /kg LW. Fossil fuel energy demand ranged from 12.9 to 17.4 MJ/kg LW, with a national average value of 14.5 MJ/kg LW, and land occupation ranged from 10.9 to 16.1 m2/kg LW, with a national average value of 16.1 m2/kg LW and with arable land representing 97% to 99% of total land occupation. National average impacts associated with production of wholesale pork, including impacts from meat processing, were 184 ± 43 L fresh water consumption, 172 ± 53 L H2O-e stress-weighted water, 27 ± 2.6 MJ fossil fuel energy demand and 25.9 ± 5.5 m2 land/kg wholesale pork. Across all categories through to the wholesale product, resource use was highest from the production of feed inputs, indicating that improving feed conversion ratio is the most important production metric for reducing the resource use. Housing type and energy generation from manure management also influence resource use requirements and may offer improvement opportunities.


2016 ◽  
Vol 56 (5) ◽  
pp. 882 ◽  
Author(s):  
Stephen Wiedemann ◽  
Eugene McGahan ◽  
Caoilinn Murphy ◽  
Mingjia Yan

Resource use and environmental impacts are important factors relating to the sustainability of beef production in Australia. This study used life cycle assessment to investigate impacts from grass-finished beef production in eastern Australia to the farm gate, reporting impacts per kilogram of liveweight (LW) produced. Mean fossil fuel energy demand was found to vary from 5.6 to 8.4 MJ/kg LW, mean estimated fresh water consumption from 117.9 to 332.4 L/kg LW and crop land occupation from 0.3 to 6.4 m2/kg LW. Mean greenhouse gas emissions ranged from 10.6 to 12.4 kg CO2-e/kg LW (excluding land use and direct land-use change emissions) and were not significantly different (P > 0.05) for export or domestic market classes. Enteric methane was the largest contributor to greenhouse gas emissions, and multiple linear regression analysis revealed that weaning rate and average daily gain explained 80% of the variability in supply chain greenhouse gas emissions. Fresh water consumption was found to vary significantly among individual farms depending on climate, farm water supply efficiency and the use of irrigation. The impact of water use was measured using the stress-weighted water use indicator, and ranged from 8.4 to 104.2 L H2O-e/kg LW. The stress-weighted water use was influenced more by regional water stress than the volume of fresh water consumption. Land occupation was assessed with disaggregation of crop land, arable pasture land and non-arable land, which revealed that the majority of beef production utilised non-arable land that is unsuitable for most alternative food production systems.


2017 ◽  
Vol 240 ◽  
pp. 135-147 ◽  
Author(s):  
Sarah J. Gerssen-Gondelach ◽  
Rachel B.G. Lauwerijssen ◽  
Petr Havlík ◽  
Mario Herrero ◽  
Hugo Valin ◽  
...  

Author(s):  
Giuseppe Grosso ◽  
Ujué Fresán ◽  
Maira Bes-Rastrollo ◽  
Stefano Marventano ◽  
Fabio Galvano

Background: Current scientific literature suggests healthy dietary patterns may have less environmental impact than current consumption patterns, but most of the studies rely on theoretical modeling. The aim of this study was to assess the impact on resources (land, water, and energy) use and greenhouse gas (GHG) emissions of healthy dietary patterns in a sample of Italian adults. Methods: Participants (n = 1806) were recruited through random sampling in the city of Catania, southern Italy. Dietary consumption was assessed through a validated food frequency questionnaire (FFQ); dietary patterns were calculated through dietary scores. The specific environmental footprints of food item production/processing were obtained from various available life-cycle assessments; a sustainability score was created based on the impact of the four environmental components calculated. Results: The contribution of major food groups to the environmental footprint showed that animal products (dairy, egg, meat, and fish) represented more than half of the impact on GHG emissions and energy requirements; meat products were the stronger contributors to GHG emissions and water use, while dairy products to energy use, and cereals to land use. All patterns investigated, with the exception of the Dietary Approach to Stop Hypertension (DASH), were linearly associated with the sustainability score. Among the components, higher adherence to the Mediterranean diet and Alternate Diet Quality Index (AHEI) was associated with lower GHG emissions, dietary quality index-international (DQI-I) with land use, while Nordic diet with land and water use. Conclusions: In conclusion, the adoption of healthy dietary patterns involves less use of natural resources and GHG emissions, representing eco-friendlier options in Italian adults.


2016 ◽  
Vol 16 (6) ◽  
pp. 1497-1513
Author(s):  
Shereif H. Mahmoud ◽  
A. A. Alazba

Spatiotemporal distributions of water consumption for various land use-cover types over the Eastern province of Saudi Arabia were estimated using Surface Energy Balance Algorithm. Water consumption of various land use and cover classes shows similar seasonal dynamic trends. The spatial distribution of annual actual evapotranspiration (AET) shows low values in the Empty Quarter (231–438 mm/yr), and moderate values in the Eastern Province borders (439–731 mm/yr). Very high AET values were observed in irrigated croplands in the Northern plains, Hafar Al-Batin, the central coastal lowlands, and the southern coastal lowlands, where annual AET ranged from 732 to 1,790 mm/yr, representing the majority of the study area agricultural land. Evaporative behavior of land use-cover types indicated that irrigated cropland, which occupies 0.37% of the study area, has an average daily AET ranging from 9.2 mm/day in January to a maximum value in April (30 mm/day). Average annual water use by irrigated cropland is relatively very high and it is roughly 1,786.9 mm/yr, while water bodies, which cover 0.023% (121.2 km2) of the study area, also had relatively high mean AET (660.8 mm/yr). Overall, AET rates for irrigated cropland are much higher than for other land uses.


2021 ◽  
Author(s):  
Oskar Englund ◽  
Pål Börjesson ◽  
Blas Mola-Yudego ◽  
Göran Berndes ◽  
Ioannis Dimitriou ◽  
...  

Abstract The land sector needs to increase biomass production to meet multiple demands while reducing negative land use impacts and transitioning from being a source to being a sink of carbon. The new Common Agricultural Policy of the EU (CAP) steers towards a more needs-based, targeted approach to addressing multiple environmental and climatic objectives, in coherence with other EU policies. In relation to this, new schemes are developed to offer farmers direct payments to adapt practices beneficial for climate, water, soil, air and biodiversity. Multifunctional biomass production systems have potential to reduce environmental impacts from agriculture while maintaining or increasing biomass production for the bioeconomy across Europe. Here, we present the first attempt to model the deployment of two such systems, riparian buffers and windbreaks, across >81.000 landscapes in Europe (EU27 + UK), aiming to quantify the resulting ecosystem services and environmental benefits, considering three deployment scenarios with different incentives for implementation. We found that these multifunctional biomass production systems can reduce N emissions to water and soil loss by wind erosion, respectively, down to a “low” impact level all over Europe, while simultaneously providing substantial environmental co-benefits, using less than 1% of the area under annual crops in the EU. The GHG emissions savings of utilizing the biomass produced in these systems for replacing fossil alternatives, combined with the increases in soil organic carbon, correspond to 1-1,4% of total GHG emissions in EU28. The introduction of “eco-schemes” in the new CAP may resolve some of the main barriers to implementation of large-scale multifunctional biomass production systems. Increasing the knowledge of these opportunities among all EU member states, before designing and introducing country-specific Eco-scheme options in the new CAP, is critical.


2012 ◽  
pp. 169-177 ◽  
Author(s):  
Ingo Klenk ◽  
Birgit Landquist ◽  
Oscar Ruiz de Imana

The calculations made to obtain the PCF of EU white sugar from sugar beet have revealed that the results are extremely sensitive to methodological choices and this article provides some recommendations in that regard. A comparison of EU beet sugar with two examples of raw cane sugar imported and refined in the EU, showed that the PCF range for EU refined cane sugar is on average similar, if not higher (642–760 kg CO2eq/t sugar) than the total methodological PCF range for the EU beet sugar average case (242–771 kg CO2eq/t sugar). A review of the published literature revealed, on the one hand, that land use change emissions for cane sugar can be very significant but are rarely taken into account, and on the other hand, that overseas transport and refining adds a significant amount of emissions to the PCF of raw cane sugar imported into the EU. An overall land use efficiency comparison between cane and beet production systems also concluded that significantly more land (51%) is required by cane systems to produce an equivalent set of products (sugar and co-products) with an equivalent amount of GHG emissions. Finally, the limitations of PCFs as a tool to evaluate the overall environmental sustainability of EU beet sugar were also analysed


2020 ◽  
Author(s):  
Giacomo Falchetta ◽  
Nicolò Golinucci ◽  
Michel Noussan

<p>In sub-Saharan Africa (SSA) most people live on plant-dominated diets, with significantly lower levels of per-capita meat consumption than in any other region. Yet, economic development has nearly everywhere spurred a shift to dietary regimes with a greater consumption of meat, albeit with regional heterogeneity for meat-type and magnitude. A growing regional economy, changing cultural attitudes, and a steeply increasing population could thus push the regional demand upward in the coming decades, with significant depletion of regional and global natural resources and environmental repercussions. We study the historical association of the four main meat types with demand drivers in recently developed countries via seemingly unrelated regression (SUR) equation systems. Using the calibrated coefficients, trajectories of meat consumption in SSA to 2050 are projected relying on the SSP scenarios over GDP and population growth. Then, using a Leontiefian environmentally extended input-output (EEIO) framework exploiting the EXIOBASE3 database, we estimate the related energy, land, and water requirements, and the implied greenhouse gas (CO<sub>2</sub>, CH<sub>4</sub>, N<sub>2</sub>O) emissions. We calculate that if production to meet those consumption levels takes place in the continent – compared to the current situation – global greenhouse gas (GHG) emissions would grow by 230 Mt CO<sub>2</sub>e (4.4% of today’s global agriculture-related emissions), the land required for cropping and grazing would require additional 4.2 · 10<sup>6</sup> km<sup>2</sup> (more than half of the total arable land in SSA), total blue water consumption would rise by 10,300 Mm<sup>3</sup> (0.89% of the global total), and additional 1.2 EJ of energy (6% of today’s total primary energy demand in the region) would be required. Alternative scenarios where SSA is a net importer of final meat products are reported for comparison. The local policy and attitudes towards farming practices and dietary choices will have significant impact on both the regional environment and global GHG emissions.</p>


Sign in / Sign up

Export Citation Format

Share Document