Using krabok (Irvingia malayana) seed oil and Flemingia macrophylla leaf meal as a rumen enhancer in an in vitro gas production system

2017 ◽  
Vol 57 (2) ◽  
pp. 327 ◽  
Author(s):  
Sungchhang Kang ◽  
Metha Wanapat ◽  
Kampanat Phesatcha ◽  
Thitima Norrapoke ◽  
Suban Foiklang ◽  
...  

An in vitro gas production system was conducted to investigate the effect of krabok (Irvingia malayana) seed oil (KSO) and Flemingia (Flemingia macrophylla) leaf powder (FLM) supplementation on gas production kinetics, volatile fatty acid (VFA) and methane production with different ratios of rice straw to cassava chip (RS : CC). The treatments were arranged according to a 4 × 2 × 2 factorial arrangement in a completely randomised design using four different ratios of RS : CC (100 : 0; 60 : 40; 20 : 80; and 0 : 100), two levels of KSO supplement (0% and 2.5% of total dietary substrate) and two levels of FLM supplement (0% and 2.5% of total dietary substrate). The gas production kinetics were affected by RS : CC, KSO and FLM supplementation (P < 0.05). However, there was no interaction between RS : CC*FLM, FLM*KSO, or RS : CC*FLM*KSO; with the exception of RS : CC*KSO (P < 0.05). Cumulative gas at 96 h post incubation was increased with increasing RS : CC especially at 0 : 100. However, KSO supplementation suppressed gas production whereas FLM could enhance gas production from feed fraction (P < 0.05). Increasing RS : CC ratio resulted in increasing total VFA, propionic acid and butyric acid whereas acetic acid concentration was reduced; therefore, ratio of acetic acid : propionic acid was reduced. However, KSO supplementation depressed VFA production whereas the FLM supplement had no effect. The methane production was reduced with increasing level of RS : CC especially with supplementation of KSO. Based on this study, it is concluded that KSO addition could reduce methane production whereas FLM could enhance the gas production and fermentation end products; hence, the combined use is potentially beneficial. However, further research under in vivo conditions should be conducted.




2020 ◽  
Vol 60 (16) ◽  
pp. 1918 ◽  
Author(s):  
Bounnaxay Viennasay ◽  
Metha Wanapat ◽  
Pajaree Totakul ◽  
Burarat Phesatcha ◽  
Thiwakorn Ampapon ◽  
...  

Fodder shrub, Flemingia macrophylla silage (FMS), was nutritionally evaluated for rumen fermentation characteristics using an in vitro gas production technique. Dietary treatments were imposed in a 2 × 7 factorial arrangement in a completely randomised design. The first factor was two ratios of roughage:concentrate (R:C at 60:40 and 40:60), and the second factor was seven levels of FMS supplementation at 0, 20, 40, 60, 80, 100 and 120 g/kg of dietary substrate. The results revealed that a R:C ratio at 40:60 increased the kinetics of gas production (P &lt; 0.001). Moreover, supplementation of FMS increased in vitro degradability and the concentration of propionic acid (P &lt; 0.001), whereas acetic acid concentration, protozoal population and methane production were reduced (P &lt; 0.001). In conclusion, supplementation of FMS at 120 g/kg of dietary substrate improved rumen fermentation and subsequently reduced methane production. However, in vivo feeding trials using FMS should be conducted to gain more information for further implementations.



2017 ◽  
Vol 73 (2) ◽  
pp. 368-380 ◽  
Author(s):  
J. P. P. Rodrigues ◽  
M. Ramin ◽  
P. Huhtanen ◽  
F. Aru ◽  
E. Detmann ◽  
...  


Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 108
Author(s):  
Yichong Wang ◽  
Sijiong Yu ◽  
Yang Li ◽  
Shuang Zhang ◽  
Xiaolong Qi ◽  
...  

Nutritional strategies can be employed to mitigate greenhouse emissions from ruminants. This article investigates the effects of polyphenols extracted from the involucres of Castanea mollissima Blume (PICB) on in vitro rumen fermentation. Three healthy Angus bulls (350 ± 50 kg), with permanent rumen fistula, were used as the donors of rumen fluids. A basic diet was supplemented with five doses of PICB (0%–0.5% dry matter (DM)), replicated thrice for each dose. Volatile fatty acids (VFAs), ammonia nitrogen concentration (NH3-N), and methane (CH4) yield were measured after 24 h of in vitro fermentation, and gas production was monitored for 96 h. The trial was carried out over three runs. The results showed that the addition of PICB significantly reduced NH3-N (p < 0.05) compared to control. The 0.1%–0.4% PICB significantly decreased acetic acid content (p < 0.05). Addition of 0.2% and 0.3% PICB significantly increased the propionic acid content (p < 0.05) and reduced the acetic acid/propionic acid ratio, CH4 content, and yield (p < 0.05). A highly significant quadratic response was shown, with increasing PICB levels for all the parameters abovementioned (p < 0.01). The increases in PICB concentration resulted in a highly significant linear and quadratic response by 96-h dynamic fermentation parameters (p < 0.01). Our results indicate that 0.2% PICB had the best effect on in-vitro rumen fermentation efficiency and reduced greenhouse gas production.



2013 ◽  
Vol 179 (1-4) ◽  
pp. 46-53 ◽  
Author(s):  
M.M.Y. Elghandour ◽  
A.Z.M. Salem ◽  
M. Gonzalez-Ronquillo ◽  
J.L. Bórquez ◽  
H.M. Gado ◽  
...  


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 182-182
Author(s):  
Marjorie A Killerby ◽  
Diego Zamudio ◽  
Kaycee Ames ◽  
Darren D Henry ◽  
Thomas Schwartz ◽  
...  

Abstract This study evaluated the effects of preservatives on the in vitro fermentation measures of wet brewer’s grain (WBG) silage at different stages of storage. Treatments (TRT) were sodium lignosulfonate at 1% (NaL1) and 2% (NaL2; w/w of fresh WBG), propionic acid (PRP; 0.5% w/w of fresh WBG), a combination inoculant (INO; Lactococcus lactis and Lactobacillus buchneri each at 4.9 log cfu/fresh WBG g), and untreated WBG (CON). WBG (Fresh) were packed into 8.8 L mini-silos and stored for 60 d at 21°C (Ensiled), then they were opened and aerobically exposed for 10d (AES). Samples from each stage of storage (STG; Fresh, Ensiled and AES) were analyzed for in vitro ruminal digestibility (24 h).Gas kinetics were recorded using the Ankom RF Gas Production System. Data were analyzed as a randomized complete block design (5 blocks) with a 5 (TRT) × 3 (STG) factorial arrangement. Apparent in vitro DM digestibility (DMD) decreased across STG, (51.5, 47.2 and 40.9 for Fresh, Ensiled and AES, respectively) and increased for NaL1, NaL2 and PRP (~47.8) vs. CON (43.0 ± 2.12%). PRP increased apparent in vitro OM digestibility (OMD) when Ensiled (54.5) and NaL2 increased it for AES (47.1) vs CON (46.3 and 39.9 ± 1.73%, respectively). The asymptotic maximal (M) and rate (k) of gas production decreased across STG (214.6, 181.5, 155.1 and 14.6, 12.6, and 9.8, for Fresh, Ensiled and AES, respectively). PRP increased (200.0) and NaL1 decreased (169.3) M vs. CON (183.9± 7.81ml/incubated DM g), while NaL1 and NaL2 (~11.4) decreased k vs. CON (13.4 ± 0.85%/h). Methane concentration and yield were higher in Fresh vs. other STG (0.94 vs. ~0.84 ± 0.07mM and 0.27 vs. ~0.23 ± 0.03mmol/g fermented OM). Spoilage of WBG decreases fermentability and methane production while PRP and NaL improve digestibility with the former also increasing M and k.



1970 ◽  
Vol 46 (3) ◽  
pp. 325-335
Author(s):  
E. Maleki ◽  
G.Y. Meng ◽  
M. Faseleh Jahromi ◽  
R. Jorfi ◽  
A. Khoddami ◽  
...  

The objective of this study was to determine the effect of pomegranate (Punica granatum L.) seed oil (PSO) on gas and methane (CH4) production, ruminal fermentation and microbial populations under in vitro conditions. Three treatments consisting of a control diet containing 10 mg tallow (CON); the control diet with 5 mg PSO + 5 mg tallow (MPSO) and the control diet containing 10 mg PSO (HPSO) were compared. Ten mg of the experimental fat/oil samples were inserted into a gas-tight 100 mL plastic syringe containing 30 mL of an incubation inoculum and 250 mg of a basic substrate of a hay/concentrate (1/1, w/w) mixture. In vitro gas production was recorded over 0, 2, 4, 6, 8, 10, 12 and 24 h of incubation. After 24 hours, incubation was stopped, and methane production, pH, volatile fatty acids (VFAs) and microbial counts were measured in the inoculant. Gas production at 4, 6, 8, 10, 12 and 24 h incubation, metabolizable energy and in vitro organic matter disappearance increased linearly and quadratically as level of PSO increased. Furthermore, the 10 mg PSO (HPSO) decreased CH4 production by 21.0% compared with the control (CON) group. There were no significant differences in total and individual VFA concentrations between different levels of PSO, except for butyric acid. After 24 h of incubation, methanogenesis decreased in the HPSO compared with the MPSO and CON treatments. In addition, total bacteria and protozoa counts increased with rising PSO levels, while population methanogenesis declined significantly. These results suggested that PSO could reduce methane emissions, which might be beneficial to nutrient utilization and growth in ruminants.



2021 ◽  
pp. 509-515
Author(s):  
Erdinç ALTINÇEKİÇ ◽  
Önder CANBOLAT ◽  
Şeniz ÖZİŞ ALTINÇEKİÇ


Sign in / Sign up

Export Citation Format

Share Document