Response of common silage corn hybrids to inoculant application: fermentation profile, carbohydrate fractions, and digestibility during ensiling

2019 ◽  
Vol 59 (9) ◽  
pp. 1696
Author(s):  
Marija Duvnjak ◽  
Kristina Kljak ◽  
Darko Grbeša

Corn silage digestibility studies have focussed on genetically distant corn types. Conversely, silage additive studies monitored fermentation differences without discussing the subject of hybrid digestibility. How ensiling phases and additives affect silage quality in commercial corn hybrids has not been properly examined yet. As corn silage quality is a result of combined silage fermentation and digestibility characteristics, the aim of the study was to examine fermentation and digestibility responses to inoculant application in whole-plant corn silage of commercial hybrids intended for silage production in several time points during ensiling. Three corn hybrids grown under identical conditions in a split-plot field test were ensiled without inoculant application and with inoculant containing lactic acid bacteria and carbohydrate-degrading enzymes. Silages were sampled before ensiling, at the peak of the fermentation phase and during the stable phase. The fermentation profile, carbohydrate fraction, ruminal in vitro true dry matter digestibility, ruminal in vitro starch digestibility, and ruminal in vitro neutral detergent fibre digestibility were monitored. Although adding inoculant to silage improved its lactic acid production and decrease in pH, it did not affect its starch and fibre contents or their digestibility. Digestibility improved as ensiling continued, with the highest in vitro neutral detergent fibre digestibility and in vitro true dry matter digestibility values observed in the stable phase. Corn hybrids in this study differed in main fermentation characteristics, carbohydrate contents, and digestibility. These results suggest that even for commercial corn hybrids, the hybrid type is more important than inoculant for optimising silage characteristics and digestibility.


2012 ◽  
Vol 11 (9) ◽  
pp. 1395-1399
Author(s):  
Tao Shao . ◽  
Yongkai Li ◽  
Chengqun Yu . ◽  
Weiyun Zhu .


1987 ◽  
Vol 67 (2) ◽  
pp. 557-562 ◽  
Author(s):  
E. V. VALDES ◽  
R. B. HUNTER ◽  
G. E. JONES

A comparison of two near infrared (NIRA) calibrations (C1 and C2) for the prediction of in vitro dry matter digestibility (IVDM) in whole-plant corn (WPC) was conducted. C1 consisted of 40 WPC samples collected from four locations across Ontario (Brucefield, London, Guelph and Elora). C2 consisted of 90 samples and included the above locations plus Pakenham and Winchester. Nine wavelengths were used in both equations but only three were common in C1 and C2 equations. These wavelengths were 2139 nm, 2100 nm, and 1445 nm, respectively. The predictions of IVDM utilizing both C1 and C2 were good. Coefficients of determination (r2) and standard error of the estimate (SEE) for calibration and prediction sets were 0.91, 1.7; 0.85, 1.7 for C1 and 0.88, 1.6; 0.77, 1.6 for C2 respectively. Regression analysis within location, however, showed low r2 values for the prediction of IVDM for Pakenham and Winchester in both calibrations. The more mature stage of harvest at these locations might be the cause of the poorer predictions. Key words: In vitro digestibility, whole-plant corn, near infrared reflectance



1999 ◽  
Vol 39 (8) ◽  
pp. 923 ◽  
Author(s):  
P. J. Moate ◽  
D. E. Dalley ◽  
J. R. Roche ◽  
C. Grainger

Summary. The effect of herbage allowance (20, 30, 40, 50, 60 and 70 kg DM/cow. day) on the consumption of nutrients from herbage and milk production by cows in early lactation, was examined. The experiment was conducted on rainfed perennial ryegrass pastures in September and October 1997 in south-eastern Victoria, Australia. The herbage on offer comprised 64% perennial ryegrass, 21% other grasses, 1% white clover, 5% weeds and 9% dead material on a dry matter (DM) basis. The average pregrazing herbage height was 13 cm, at an estimated pregrazing herbage mass of 3.6 t DM/ha. The herbage on offer was of high quality containing 11.6 MJ metabolisable energy/kg DM, 202 g crude protein/kg DM and 525 g neutral detergent fibre/kg DM. Concentrations of calcium, magnesium, sodium, potassium, phosphorus, sulfur and chloride were 4.4, 2.2, 4.4, 31.2, 3.5, 2.7 and 11.4 g/kg DM, respectively. As daily herbage allowance per cow increased, dry matter intake increased curvilinearly (P<0.01) from 11.2 to 18.7 kg DM/cow. day. This was associated with a decrease in utilisation of herbage from 54 to 26% and an increase in milk production from 25.9 to 29.1 kg/cow. day. The cows on all treatments grazed for less than 8.7 h/day. The increase in intake was achieved by an increase in the rate of herbage intake from 1.5 to 2.2 kg DM/h for herbage allowances of 20 and 70 kg/cow.day, respectively. Irrespective of herbage allowance, cows selected a diet that was approximately 10% higher in in vitro dry matter digestibility and 30% higher in crude protein than that in the herbage on offer. The neutral detergent fibre content of the herbage selected was lower (P<0.05) than that on offer. The herbage consumed contained more (P<0.05) magnesium, potassium and sulfur, the same amount of calcium and phosphorus and less (P<0.05) sodium and chloride than the herbage on offer. For rainfed perennial pastures in spring, herbage allowance is an important factor in determining voluntary feed intake and production of dairy cows. To achieve 30 L from herbage, without supplementation, high herbage allowances are required. The increase in herbage intake, with increasing herbage allowance, resulted from an increase in rate of dry matter intake and not an increase in grazing time. No relationship was evident between herbage allowance and the selection differentials for in vitro dry matter digestibility, crude protein and neutral detergent fibre. Selection differentials for rainfed perennial pastures in spring are similar to those reported for irrigated perennial pastures in northern Victoria in spring and autumn. When determining nutrient requirements it is important to consider the interaction between herbage intake and nutrient concentration in the herbage.



2018 ◽  
Vol 53 (9) ◽  
pp. 1045-1052
Author(s):  
Mateus Merlo Coelho ◽  
Lúcio Carlos Gonçalves ◽  
José Avelino Santos Rodrigues ◽  
Kelly Moura Keller ◽  
Gustavo Vinícius de Souza dos Anjos ◽  
...  

Abstract: The objective of this work was to evaluate the effects of re-ensiling and bacterial inoculation on the quality of corn silage. The experiment was carried out in a 2x2 factorial design with or without inoculant (association of Lactobacillus plantarum and Propionibacterium acidipropionici), and with re-ensiling after 36 hours of aerobic exposure or only ensiling of the whole plant of 'BRS 1055' corn. The fermentative quality, nutritional parameters, dry matter losses, aerobic stability, and microbiological counts of silages were evaluated. Re-ensiling caused an increase of pH and in acetic acid and propionic acid concentrations, as well as in the dry matter (DM), crude protein, neutral detergent fiber, and neutral detergent fiber crude protein contents. Conversely, there was a reduction in the nonfiber carbohydrates concentration and in in vitro dry matter digestibility for the re-ensiled material. All changes were explained by the higher-effluent production and DM loss of re-ensiled material that was subjected to two compactions. Microbiology was not altered by the treatments. The use of inoculant altered ash content, but it did not influence other parameters. In contrast, re-ensiling after 36 hours of aerobic exposure caused a reduction in the nutritive value of corn silage and accentuated the DM losses.



1980 ◽  
Vol 60 (2) ◽  
pp. 367-378 ◽  
Author(s):  
R. J. BOILA ◽  
J. D. ERFLE ◽  
F. D. SAUER

The two-stage Tilley and Terry technique (incubation with rumen fluid followed by an acid-pepsin digest), used to estimate dry matter (DM) digestibility of forages in vitro, was evaluated with oven-dried corn silage as a substrate. The effect of weight of substrate (100–3000 mg), continuous shaking of incubations for the period of incubation with rumen fluid, number of bacteria present in the inoculum, and the contribution of bacterial dry matter to residual feed DM was measured. Percent dry matter digested decreased linearly as weight of substrate per incubation tube increased. Continuous shaking, as opposed to intermittent mixing (twice daily) during incubation with rumen fluid, increased the rate of DM disappearance and resulted in higher digestibility coefficients. Both the volume of inoculum and the number of bacteria present in that volume of inoculum influenced the percent DM digested. Bacteria contribute weight to residual feed DM unless steps are taken to remove them by centrifugation or solubilization.



2011 ◽  
Vol 51 (12) ◽  
pp. 1117 ◽  
Author(s):  
Y. Zhu ◽  
C. S. Bai ◽  
X. S. Guo ◽  
Y. L. Xue ◽  
Kazuo Ataku

Combining corn with legumes for silage is a feasible strategy to improve crude protein concentration in corn silage. This study was conducted to determine the fermentation characteristics and overall nutritive value of ensiled corn (Zea mays L.), vine peas (Pisum sativum L.), and mixtures of the two crops at three different ratios. The two crops were ensiled in corn/pea mixtures containing 0, 33, 50, 67, and 100% corn in vacuumed plastic bags for 60 days at room temperature. The addition of peas to corn crude protein and dry matter concentrations in the ensiled forages had a negligible influence on neutral detergent fibre concentration compared with corn silage. Corn silage had a greater (P < 0.05) lactic acid concentration than vine peas silage and the mixtures. There were no differences (P > 0.05) in in vitro dry matter and neutral detergent fibre digestibility among the silages made from the vine peas, corn, and mixtures. Improved fermentation characteristics were obtained in vine peas and corn mixture silage at a ratio of 33 : 67 compared with the other mixtures and vine peas silage. Results generated from this study suggest that combining vine peas with corn for silage could provide livestock with not only a high energy concentration feed, but a high concentration of crude protein as well.



2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Norafizah Abdul Rahman ◽  
Mohd Ridzwan Abd Halim ◽  
Noraniza Mahawi ◽  
Hazira Hasnudin ◽  
Jameel R. Al-Obaidi ◽  
...  

Corn was inoculated withLactobacillus plantarumandPropionibacterium freudenreichiisubsp.shermaniieither independently or as a mixture at ensiling, in order to determine the effect of bacterial additives on corn silage quality. Grain corn was harvested at 32–37% of dry matter and ensiled in a 4 L laboratory silo. Forage was treated as follows: bacterial types: B0 (without bacteria-control), B1(L. plantarum), B2 (P. freudenreichiisubsp.shermanii), and B3 (combination ofL. plantarumandP. freudenreichiisubsp.shermanii). Each 2 kg of chopped forage was treated with 10 mL of bacterial culture and allowed to ferment for 27 days. The first experiment determined the most suitable wavelength for detection of bacteria (490 nm and 419 nm for B1 and B2, resp.) and the preferable inoculation size (1 × 105 cfu/g). The second experiment analysed the effect of B1 and B2 applied singly or as a mixture on the fermentation characteristics and quality of corn silage.L. plantarumalone increased crude protein (CP) and reduced pH rapidly. In a mixture withP. freudenreichii, the final pH was the lowest compared to other treatments. As a mixture, inclusion of bacteria resulted in silage with lower digestibility than control. Corn silage treated withL. plantarumorP. freudenreichiieither alone or mixed together produced desirable silage properties; however, this was not significantly better than untreated silage.



2016 ◽  
Vol 56 (10) ◽  
pp. 1700
Author(s):  
J. M. Cantet ◽  
D. Colombatto ◽  
G. Jaurena

The objective was to assess the impact of application of two enzyme mixtures on the in vitro dry matter digestibility, neutral detergent fibre digestibility, net cumulative gas production and methane production after 24 h of incubation of Milium coloratum (formely Panicum coloratum) and a Patagonian meadow grassland. A protease (Protex 6-L) and a fibrolytic enzyme (Rovabio) were assessed at three application rates (30, 60 and 90 mg/100 mL of distiller water) on the substrates. Meadow samples were higher to Milium ones (P < 0.05) for in vitro dry matter digestibility and net cumulative gas production at 24 h. Nevertheless, Milium was ~11% higher than meadow (P < 0.05) for methane when expressed as a proportion of digested dry matter (g/kg). Rovabio did not induce differences in any variable, but the addition of Protex reduced (P < 0.05) in vitro dry matter digestibility in both substrates without bringing about differences in methane production. Collectively, the addition of these enzymes did not benefit in vitro ruminal fermentation of low quality forages.



Sign in / Sign up

Export Citation Format

Share Document