Root rot caused by Pythium irregulare Buisman, an important factor in the decline of established subterranean clover pastures

1974 ◽  
Vol 25 (4) ◽  
pp. 537 ◽  
Author(s):  
GE Stovold

The problem of poor re-establishment and poor seasonal production in long-term subterranean clover pastures has been recognized for some time, particularly on the Southern Tableland and Slopes regions of New South Wales. Field and laboratory investigations showed that rotting of the lateral feeder roots was a common disease of subterranean clover during the cool part of the growing season. Isolations made from diseased roots yielded a predominance of Pythium spp. of which Pythiurn irregulare was the most common. Pathogenicity tests demonstrated that P. irregulare consistently caused damping-off of germinating subterranean clover. This fungus also infected established plants and at low temperatures caused severe reduction of dry matter production. Symptoms produced on artificially inoculated plants were identical with those observed on plants infected in the field. Soil moisture and the level of fungal inoculum added did not have a critical effect on the severity of root disease. A range of other important pasture and crop species were also artificially infected with P. irregulare, with resulting necrosis of feeder roots. In vitro studies of factors affecting the growth of P. irregulare showed that this pathogen was well adapted to survive and cause disease in cold wet soils, the conditions most favourable for root rot in the field. The importance of P. irregulare as a pathogen of established plants and possible means of reducing its effect on the growth of subterranean clover are discussed.

2001 ◽  
Vol 41 (6) ◽  
pp. 763 ◽  
Author(s):  
M. I. Zahid ◽  
G. M. Gurr ◽  
A. Nikandrow ◽  
W. J. Fulkerson ◽  
H. I. Nicol

Fungi isolated from white clover plants growing in dairy pastures in northern New South Wales and south-eastern Queensland were tested for their pathogenicity to seedlings, excised stolons and mature white clover plants. Thirty out of 65 isolates tested, including species of Fusarium, Phytophthora, Pythium, Rhizoctonia, Phoma, Codinaea, Gliocladium, Microsphaeropsis, Trichoderma, Nectria and Macrophomina, were pathogenic to white clover roots in vitro. Ten of the fungi, including the genera Alternaria, Colletotrichum, Drechslera, Fusarium, Phoma, Macrophomina, Phomopsis and Rhizoctonia, caused stolon rot symptoms. Of the 23 fungi tested on seedlings and mature white clover plants Phytophthora megasperma, Phoma nebulosa and Pythium irregulare were the most pathogenic to both seedlings and mature plants. Root rot and plant growth suppression was more severe in pot tests using field soil compared with pasteurised potting mix. Novel methods are described for testing pathogenicity to excised stolons.


1999 ◽  
Vol 50 (8) ◽  
pp. I

The interaction between 29 isolates of Rhizobium and the in vitro growth of 3 strains of Phytophthora clandestina was investigated to determine the potential of these bacteria as biological control agents against root rot of subterranean clover (Trifolium subterraneum L.). The biological control activity of Rhizobium on the severity of root disease in seedlings was also investigated under glasshouse conditions. Thirteen of the 29 Rhizobium isolates caused significant reductions in the hyphal growth of the 3 P. clandestina isolates examined. Inoculation of seedlings with Rhizobium trifolii reduced the severity of root disease by 14–58% with corresponding increases in dry matter production of 20–73%. These results indicate that Rhizobium species have potential as biological control agents against the root rot of T. subterraneum seedlings caused by P. clandestina.


2000 ◽  
Vol 53 ◽  
pp. 436-440 ◽  
Author(s):  
N.W. Waipara ◽  
S.K. Hawkins

A preliminary survey of pastures sprayirrigated with dairyshed effluent revealed a significant increase in the population of plant pathogenic Pythium species isolated from both soil and roots In vitro pathogenicity tests showed the majority of these isolates to be pathogenic when inoculated onto the seedlings of white clover subterranean clover and perennial ryegrass although both clover species were more susceptible to Pythiuminduced disease than ryegrass


1999 ◽  
Vol 50 (8) ◽  
pp. 1469 ◽  
Author(s):  
S. Simpfendorfer ◽  
T. J. Harden ◽  
G. M. Murray

The interaction between 29 isolates of Rhizobium and the in vitro growth of 3 strains of Phytophthora clandestina was investigated to determine the potential of these bacteria as biological control agents against root rot of subterranean clover (Trifolium subterraneum L.). The biological control activity of Rhizobium on the severity of root disease in seedlings was also investigated under glasshouse conditions. Thirteen of the 29 Rhizobium isolates caused significant reductions in the hyphal growth of the 3 P. clandestina isolates examined. Inoculation of seedlings with Rhizobium trifolii reduced the severity of root disease by 14–58% with corresponding increases in dry matter production of 20–73%. These results indicate that Rhizobium species have potential as biological control agents against the root rot of T. subterraneum seedlings caused by P. clandestina.


2000 ◽  
Vol 51 (4) ◽  
pp. 435 ◽  
Author(s):  
M. P. You ◽  
K. Sivasithamparam ◽  
I. T. Riley ◽  
M. J. Barbetti

Asurvey of 30 medic pastures for root-rots was undertaken in Western Australia and pathogenicity tests of representative fungal isolates from roots sampled were conducted to determine the main factors contributing to medic decline and the association between those factors. In particular, the contribution of pathogenic fungi and nematodes to medic root-rot in Western Australia was studied. From a total of 30 000 pieces of root plated, 3836 fungal isolates were obtained and identified at least to genus level. Four hundred and seventy-two representative isolates were tested for in vitro pathogenicity in Medicago sphaerocarpos cv. Orion. Of these, 32 were further tested in the glasshouse. The pathogenicity tests indicated that 56% of isolates were capable of causing significant damage to the root system and it is likely that pathogenic fungi are largely responsible for medic root-rot in the field. In contrast, the number of Pratylenchus spp. in the roots was not found to relate to disease symptoms. It is concluded that soil-borne pathogenic fungi such as species of Pythium, Fusarium, and Phoma contribute significantly to medic pasture decline in Western Australia.


2001 ◽  
Vol 41 (2) ◽  
pp. 187 ◽  
Author(s):  
R. Aldaoud ◽  
W. Guppy ◽  
L. Callinan ◽  
S. F. Flett ◽  
K. A. Wratten ◽  
...  

In 1995–96, a survey of soil samples from subterranean clover (Trifolium subterraneum L.) paddocks was conducted across Victoria, South Australia, New South Wales and Western Australia, to determine the distribution and the prevalence of races of Phytophthora clandestina (as determined by the development of root rot on differential cultivars), and the association of its occurrence with paddock variables. In all states, there was a weak but significant association between P. clandestina detected in soil samples and subsequent root rot susceptibility of differential cultivars grown in these soil samples. Phytophthora clandestina was found in 38% of the sampled sites, with a significantly lower prevalence in South Australia (27%). There were significant positive associations between P. clandestina detection and increased soil salinity (Western Australia), early growth stages of subterranean clover (Victoria), mature subterranean clover (South Australia), recently sown subterranean clover (South Australia), paddocks with higher subterranean clover content (Victoria), where herbicides were not applied (South Australia), irrigation (New South Wales and Victoria), cattle grazing (South Australia and Victoria), early sampling dates (Victoria and New South Wales), sampling shortly after the autumn break or first irrigation (Victoria), shorter soil storage time (Victoria) and farmer’s perception of root rot being present (Victoria and New South Wales). Only 29% of P. clandestina isolates could be classified under the 5 known races. Some of the unknown races were virulent on cv. Seaton Park LF (most resistant) and others were avirulent on cv. Woogenellup (most susceptible). Race 1 was significantly less prevalent in South Australia than Victoria and race 0 was significantly less prevalent in New South Wales than in South Australia and Western Australia. This study revealed extremely wide variation in the virulence of P. clandestina. The potential importance of the results on programs to breed for resistance to root rot are discussed. in South Australia.


1977 ◽  
Vol 17 (89) ◽  
pp. 1004 ◽  
Author(s):  
DL Michalk ◽  
PA Witschi

Between 1962 and 1964, 4 experiments were conducted at Leeton, New South Wales, Australia to examine the potential productivity of a range of irrigated winter forage crops in providing useful feed during the period of shortage in late autumn and early winter. In addition, the effects of sowing rate were examined for sowings using (a) prepared seedbeds or (b) sod-seeding into existing subterranean clover/Lolium rigidum cv. Wimmera pastures. DM yields at 74, 109, 144 or 173 days from sowing were compared with a subterranean clover/ryegrass control. Of the spp. evaluated the cereals were the most consistent both for initial production and subsequent regrowth. For the cruciferous spp. early cutting (100 days after sowing) proved detrimental to subsequent production, reducing the contribution of the sown spp. to 3% DM. Although the low proportion of the leguminous forages limited their potential production, they increased pasture quality relative to the clover/ryegrass control. DM production of wheat and rape increased with increasing sowing rate on (a) but for turnips there was a yield decline with increased sowing rate. Oats showed no response to sowing rate on (a), but increasing the sowing rate on (b) plots increased the proportion of oats in the pasture, although there was a consequent reduction in total yield. Increases in the contribution made by wheat to total yield as a result of increased sowing on (b) plots were small.


Author(s):  
Alejandra Mondragón-Flores ◽  
Patricia Manosalva ◽  
Salvador Ochoa-Ascencio ◽  
Marlene Díaz-Celaya ◽  
Gerardo Rodríguez-Alvarado ◽  
...  

<em>Phytophthora cinnamomi</em> is the pathogen most frequently associated with avocado root rot. In Zitácuaro, Michoacán, production has increased by 19.8%; however, there are no studies of root rot in this area. The objective of the study was to characterize the isolates obtained from avocado roots and assess the sensitivity to fungicides. Samples from 5 avocado orchards were collected, sampling 5 trees per orchard (a total of 25 samples). The samples isolated were characterized morphological and molecularly. Mating type was analyzed using reference isolates of<em> P. cinnamomi</em> A1 (isolate from camelia) and A2 (isolate from avocado). To confirm the pathogenicity, tests were performed on avocado fruits with the isolates. The sensitivity of 15 isolates to potassium phosphite and to metalaxyl-M at different concentrations was evaluated<em> in vitro</em>. In a subgroup of six isolates, it was evaluated whether there was a relationship between growth rate and potassium phosphite sensitivity. Fifteen isolates were obtained with coenocytic coraloid mycelium, chlamydospores, sporangia without papilla, ovoid to ellipsoid, with internal proliferation, heterothallic with mating type A2, with amphigynous antheridia and plerotic oospores, characteristics consistent with <em>P. cinnamomi</em>. The inoculated isolates were pathogenic on avocado fruits. The isolates were more sensitive to potassium phosphite than to metalaxyl-M, with mean EC50 values of 24.62 and 0.215 ?g mL-1 of i.a., respectively. No relationship was observed between growth rate and potassium phosphite sensitivity. It is necessary to obtain a greater number of<em> P. cinnamomi</em> isolates for virulence studies.


1967 ◽  
Vol 7 (29) ◽  
pp. 528 ◽  
Author(s):  
GE Robards ◽  
JH Leigh

A grazing experiment on a barley grass (Hordeum leporium Link) dominant pasture at Deniliquin, New South Wales, was carried out from May to November 1964. Monthly grazing of this pasture resulted in a greater dry matter yield of both green and total barley grass, and of crude protein, than when grazing occurred less frequently. The greatest stimulus to production was achieved when grazing occurred in August or September when the plants were approaching flowering. Rat's-tail fescue (Vulpia myuros (L.) K.C. Gmel), the other main component of the pasture, was not stimulated to greater total dry matter production by increasing the frequency of grazing. However, significantly more green fescue was harvested from areas grazed most frequently. The quality of both species, as estimated by nitrogen content and in vitro digestibility of barley grass and nitrogen content of fescue, was higher late in the season on the monthly grazed areas than on areas grazed less frequently.


Plant Disease ◽  
2020 ◽  
Vol 104 (8) ◽  
pp. 2054-2059 ◽  
Author(s):  
Angel Rebollar-Alviter ◽  
Hilda Victoria Silva-Rojas ◽  
Dionicio Fuentes-Aragón ◽  
Uriel Acosta-González ◽  
Merari Martínez-Ruiz ◽  
...  

In the 2017 strawberry season, several transplant losses reaching 50% were observed in Zamora, Michoacán Valley, Mexico, due to a new fungal disease associated with root rot, crown rot, and leaf spot. In this year the disease appeared consistently and increased in the following seasons, becoming a concern among strawberry growers. Thus, the aim of this research was to determine the etiology of the disease and to determine the in vitro effect of fungicides on mycelial growth of the pathogen. Fungal isolates were obtained from symptomatic strawberry plants of the cultivars ‘Albion’ and ‘Festival’ and were processed to obtain monoconidial isolates. Detailed morphological analysis was conducted. Concatenated phylogenetic reconstruction was conducted by amplifying and sequencing the translation elongation factor 1 α, β-tubulin partial gene, and the internal transcribed spacer region of rDNA. Pathogenicity tests involving inoculation of leaves and crowns reproduced the same symptoms as those observed in the field, fulfilling Koch’s postulates. Morphology and phylogenetic reconstruction indicated that the causal agent of the described symptoms was Neopestalotiopsis rosae, marking the first report anywhere in the world of this species infecting strawberry. N. rosae was sensitive to cyprodinil + fludioxonil, captan, iprodione, difenoconazole, and prochloraz.


Sign in / Sign up

Export Citation Format

Share Document