Physiological responses of semiarid grasses. III.* Growth in relation to temperature and soil water deficit

1975 ◽  
Vol 26 (3) ◽  
pp. 447 ◽  
Author(s):  
EK Christie

The optimum temperature for vegetative growth of mulga grass was about 25°C, and for Mitchell and buffel grasses 30°. Buffel grass had the highest yield at all temperatures, partly because of its higher growth rate which in turn can be ascribed to both a higher net assimilation rate and the diversion of a greater proportion of dry weight into leaf area. Seedlings with an ample supply of phosphate had higher relative growth rates than phosphorus-deficient seedlings at the commencement of the soil drying cycle, but their growth rates declined more rapidly as the soil water potential fell. This decline was associated with a reduction in the rate of phosphate absorption as well as a decrease in the tissue phosphorus concentration. *Part II, Aust. J. Agric. Res., 26: 437 (1975).

HortScience ◽  
2005 ◽  
Vol 40 (3) ◽  
pp. 795-798 ◽  
Author(s):  
Dana L. Baumann ◽  
Beth Ann Workmaster ◽  
Kevin R. Kosola

Wisconsin cranberry growers report that fruit production by the cranberry cultivar `Ben Lear' (Vaccinium macrocarpon Ait.) is low in beds with poor drainage, while the cultivar `Stevens' is less sensitive to these conditions. We hypothesized that `Ben Lear' and `Stevens' would differ in their root growth and mortality response to variation in soil water potential. Rooted cuttings of each cultivar were grown in a green-house in sand-filled pots with three different soil water potentials which were regulated by a hanging water column below a fritted ceramic plate. A minirhizotron camera was used to record root growth and mortality weekly for five weeks. Root mortality was negligible (2% to 6%). Whole plant relative growth rates were greatest for both cultivars under the wettest conditions. Rooting depth was shallowest under the wettest conditions. Whole-plant relative growth rates of `Ben Lear' were higher than `Stevens' at all soil water potentials. `Stevens' plants had significantly higher root to shoot ratios and lower leaf area ratios than `Ben Lear' plants, and produced more total root length than `Ben Lear' at all soil water potentials. Shallow rooting, high leaf area ratio, and low allocation to root production by `Ben Lear' plants may lead to greater susceptibility to drought stress than `Stevens' plants in poorly drained cranberry beds.


1969 ◽  
Vol 49 (4) ◽  
pp. 465-470
Author(s):  
D. B. Wilson ◽  
A. Johnston

Seedlings of a native grass, rough fescue, Festuca scabrella Torr., and of a tame grass, tall fescue, Festuca arundinacea Schreb., were grown in the greenhouse for 10 weeks. Each week 20 plants of each species were destructively harvested for growth analysis. Leaf and tiller numbers and leaf lengths were recorded for an additional 10 plants of each species. Mean net assimilation rates of rough fescue were similar to those of tall fescue, but leaf area ratios were significantly lower. Thus, mean relative growth rates of rough fescue were less than those of tall fescue. Tiller numbers were similar for both species but rough fescue produced fewer leaves. Dry weight of tops of the tame grass produced during the 10-week period was about 17 times that produced by the native grass.


1967 ◽  
Vol 69 (3) ◽  
pp. 305-315 ◽  
Author(s):  
J. E. Jackson

Growth analysis of cotton crops sown in the Sudan Gezira at monthly intervals between August and May revealed a marked seasonal pattern of growth. Irrespective of plant age and fruiting state growth of non-senescent plants was slowest during the cool winter months. Relative growth rates of young plants were highest in August, September and early October due to the high specific leaf areas and fairly high net assimilation rates found then. They were lowest when minimum temperatures were lowest. Net assimilation rates were also lowest in the coolest months, probably as a result of restricted growth. High temperatures in the spring reduced fruiting. It is concluded that low minimum temperatures and high evaporation rates are both associated with slow growth, and play a large part in determining the characteristic decline of growth rates of cotton sown at the usual date in August.I wish to thank the Chief of the Research Division, Ministry of Agriculture, Sudan, for permission to publish this paper and to record my gratitude to the team of field and laboratory assistants, especially Salih Saad and Hassan Osman, who helped in the work.


1989 ◽  
Vol 40 (2) ◽  
pp. 293 ◽  
Author(s):  
DR Eagling ◽  
RJ Sward ◽  
GM Halloran

Measurements were made on the effect of barley yellow dwarf virus (BYDV) infection on the early growth of four commercial cultivars of ryegrass (Lolium spp.) under two different temperatures (24�C and 16�C). At 24'C, BYDV infection was associated with reduced root dry weight (30-40%) in all cultivars; the effect of infection on shoot dry weight and leaf area was variable. At 16�C, the effect of BYDV infection was variable, being associated with increases in root dry weight, shoot dry weight, and leaf area in one cultivar (Grasslands Ariki) and decreases in another (Victorian). In two other cultivars, root dry weight, shoot dry weight and leaf area were not significantly affected (P>0.05) by infection with BYDV.At 24�C, the reductions in root dry weight associated with BYDV infection were not concomitant with reductions in the root relative growth rates. Up to at least 28 days after inoculation (46-50 days after germination) reductions in root dry weight were associated with both aphid-feeding damage and virus infection. Experiments with the cultivar Victorian, showed that shoot dry weight was not significantly affected (P>0.05) by feeding with viruliferous (BYDV) or non-viruliferous aphids (Rhopalosiphum padi L.). At 16�C, changes in root and shoot dry weight were associated with changes in the root and shoot relative growth rates.


1966 ◽  
Vol 46 (6) ◽  
pp. 611-617 ◽  
Author(s):  
R. Kaul

Seedlings of wheat, oats, and barley were grown in nutrient solution and subjected to uniform water stresses by the addition of different amounts of polyethylene glycol to the medium. The polyethylene glycol was refined by passage through a combined millipore – ion exchange filter. The solution was circulated by an automatic system which drained and refilled growth tanks once every 45 minutes. Relative growth rates, calculated from changes in dry weight, were used as a measure of drought tolerance. Between the second and the sixth leaf stages, but not at the first leaf stage, the drought tolerance of Thatcher wheat was significantly greater than that of Exeter oats or Husky barley. Oats and barley responded similarly to water stress.


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 619d-619
Author(s):  
Muntubani D. S. Nzima ◽  
George C. Martin ◽  
Chic Nishijima

Trees that fruited during 1990 retained 67.3% of the inflorescence buds produced per branch in 1991 compared to 63.1% for trees that were defoliated immediately after harvest in 1990 and 21.3% by trees that were fruiting in 1991. Shading reduced bud retention similar to fruiting. Defoliation after nut harvest accentuated the delayed costs of reproduction caused by previous season's fruiting whereas shading produced significantly greater immediate costs. Shading effects on the allocation of carbon to buds, leaves and shoots were similar to those of fruiting. Leaf net photosynthesis under shade conditions was reduced to 14.27% of control trees and this led to a significant reduction in the relative growth rates of all the organs surveyed.


1995 ◽  
Vol 120 (6) ◽  
pp. 977-982 ◽  
Author(s):  
Mack Thetford ◽  
Stuart L. Warren ◽  
Frank A. Blazich

Uniconazole was applied as a foliar spray at 0, 90, 130, 170, or 210 mg·liter-1 to rooted stem cuttings of `Spectabilis' forsythia (Forsythia ×intermedia Zab.) potted in calcined clay. Plants were harvested 0, 40, 80, 120, and 369 days after treatment (DAT). Treatment with uniconazole at 90 to 210 mg·liter suppressed leaf area and dry weight an average of 16% and 18%, respectively, compared to the nontreated controls when averaged over all harvest periods. Stem and root dry weight suppression was greatest at 80 DAT, 47% and 37%, respectively. Uniconazole suppressed root length from 15% to 36% and root area from 15% to 33% depending on harvest date. Internode length and stem diameter of uniconazole-treated plants were suppressed at all harvests except 369 DAT. Uniconazole resulted in increased and decreased root: shoot ratios 40 and 80 DAT, respectively; while root: shoot ratios were not affected for the remainder of the study. Relative growth rates of leaves, stems, and roots decreased with increasing uniconazole concentration; however, no relative growth rates were suppressed beyond 80 DAT. Generally, mineral nutrient concentrations increased as a result of uniconazole application. The proportion of mineral nutrients allocated to leaves and roots was not affected while the proportion of nutrients allocated to stems decreased with uniconazole application compared to the controls. Chemical name used: (E)-1-(p-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)-1-penten-3-ol (uniconazole).


Sign in / Sign up

Export Citation Format

Share Document