The effect of copper supply on vegetative and seed yield of pasture legumes and the field calibration of a tissue test for detecting copper deficiency. II. Strawberry clover (Trifolium fragiferum L.)

1989 ◽  
Vol 40 (4) ◽  
pp. 833
Author(s):  
JD McFarlane

Seven rates of copper were applied to the soil prior to the sowing of strawberry clover (Trifolium fragiferumL. cv. Palestine) on an alkaline peat deficient in copper. Symptoms of copper deficiency were evident only on the untreated plots where the clover did not set seed nor persist into the second year.Over five years� production, 1.0 kg Cu/ha continued to provide adequate copper, with regular dressings of superphosphate, for maximum dry matter production and seed yield. It was found that seed yield was more sensitive than vegetative dry matter yield to sub-optimal copper supply. At the lowest rate of applied copper (0.125 kg/ha), the vegetative yield ranged from 53% to 80% of the maximum harvest yield, whereas the seed yield ranged from 15% to 50% of maximum yield.For tissue sampled in the spring, the proposed critical range for copper concentration in the youngest open leaf (YOL) for vegetative dry matter production is 3-35 mg Cu/kg whereas that for seed production is 4.5-5.5 mg Cu/kg. At other times of the year the critical concentrations were higher. It was not clear if this was due to environmental conditions or changing internal requirements for copper.The critical copper concentration range in whole top (WT) tissue of 3.0-4.0 mg/kg for vegetative dry matter production could be applied to all samplings. For seed yield the critical range for copper concentration in WT was 4.0-5.0 mg/kg for the spring harvests. The critical copper concentration in seed for seed production was 5.0-6.0 mg/kg. In the pasture situation a critical concentration of 5.0-6.0 mg Cu/kg in the WT should be adopted when the animal requirement is considered.

1989 ◽  
Vol 40 (4) ◽  
pp. 817 ◽  
Author(s):  
JD McFarlane

Three cultivars of subterranean clover (Trifolium subterraneum L. cvv. Woogenellup, Nungarin; Trifolium yanninicum cv. Trikkala) were grown on three copper-deficient soil types at seven rates of copper, applied at sowing, to determine their vegetative and seed yield response to copper fertilizer.On two soil types, symptoms of copper deficiency were apparent where no copper was supplied. On the third, symptoms appeared only in one season, after the site was waterlogged. On the three soil types, the symptoms disappeared when 0.125 kg Cu/ha was applied at sowing. although at this rate vegetative and seed yields were reduced by as much as 44% and 59% respectively.The proposed critical concentration range in youngest open leaf tissue for both diagnosing maximum vegetative dry matter and predicting maximum seed yield is 3.0-4.5 mg Cu/kg for Woogenellup and Nungarin subterranean clover. Trikkala subterranean clover had higher critical concentration ranges for diagnosing maximum vegetative dry matter (4.0-6.0 mg Culkg) and predicting maximum seed yield (4.5-7.0 mg Cu/kg). It was not clear whether this difference was due to a higher internal requirement for copper of Trikkala or overlying environmental conditions affecting the external copper supply at the time of sampling.For whole top tissue (WT), there was no difference in the critical concentration range between the three cultivars for diagnosing maximum vegetative yield (3.0-4.0 mg Cu/kg). However, the critical concentration in WT for predicting maximum seed yield was higher for Trikkala (5.0-6.0 mg Cu/kg) than Woogenellup and Nungarin (3.5-4.5 mg Cu/kg). In the pasture situation, a critical concentration of 5.0-6.0 mg Cu/kg in the WT should be adopted when animal requirement is considered.Seed copper concentration for predicting maximum seed or vegetative yield was not a reliable indicator of copper status of subterranean clover.


2019 ◽  
Vol 17 (1) ◽  
pp. 33-38
Author(s):  
Swapan Kumar Paul ◽  
Mosa Morsheda Khatun ◽  
Md Abdur Rahman Sarkar

Sulphur is a component of plant amino acids, proteins, vitamins, and enzyme structures which influence the productivity of oil seed and total oil content. The experiment was conducted to find out the effect of sulphur on the seed yield and oil content of sesame in Bangladesh. The experiment comprised three varieties of sesame viz. Binatil-2, Binatil-3 and BARI Til-4 and six levels of sulphur (S) viz. 0, 10, 20, 30, 40 and 50 kg S ha–1. The experiment was laid out in a randomized complete block design with three replications. Dry matter production, crop characters, yield components, seed yield and oil content were significantly influenced by variety, level of sulphur and their interaction. The highest dry matter production plant–1 at 50 DAS (17.56 g), plant height (101.3 cm), number of branches plant–1 (3.66),  number of pods plant-1 (41.56), number of seeds pod-1 (58.83),  seed yield    (747.2 kg ha-1), stover yield (2243.0 kg ha–1) and oil content (40.03%) were obtained in BARI Til-4 while the corresponding lowest values of all parameters were recorded in Binatil-2. In case of sulphur application, the highest dry matter production plant–1 at 50 DAS (20.81 g), plant height (109.7 cm), number of branches plant–1 (3.87),  number of pods plant–1 (46.13),  number of seeds pod-1 (56.67),  seed yield (800.0 kg ha–1), stover yield (2787 kg ha–1 ) and oil content (43.97%) were obtained when crop was fertilized with 30 kg S ha–1 while the lowest seed yield (502.2 kg ha–1), stover yield (1550.0 kg ha–1) and oil content (32.80%) were obtained in control (0 kg S ha–1). BARI Til-4 fertilized with 30 kg S ha–1 produced the highest dry matter plant–1 at 50 DAS (24.80 g), number of pods plant–1 (51.13), seeds pod–1 (62.0) and seed yield (1011.0 kg ha–1). The highest oil content (43.97%) was also recorded in BARI Til-4 fertilized with 30 kg S ha–1, which was as good as that of BARI Til-4 fertilized with 40 kg S ha–1. Therefore, BARI Til-4 fertilized with 30 kg S ha–1 can be considered as a promising practice in respect of seed yield and oil content of sesame in Bangladesh. J. Bangladesh Agril. Univ. 17(1): 33–38, March 2019


2011 ◽  
Vol 80 (3) ◽  
pp. 326-332 ◽  
Author(s):  
Kiyoshi Nagasuga ◽  
Shunsuke Uchida ◽  
Hideyuki Kaji ◽  
Yuki Hayakawa ◽  
Sumiyo Nose ◽  
...  

1973 ◽  
Vol 24 (3) ◽  
pp. 341 ◽  
Author(s):  
CS Andrew ◽  
PJVanden Berg

The effects of aluminium (0, 0.5, 1.0, and 2.0 p.p.m.) on dry matter production and subsequent short-term uptake and translocation of phosphorus in whole plants, and on the uptake of phosphorus by excised roots, of six tropical pasture legumes were ascertained. Macroptilium lathyroides, Desrnodiurn uncinaturn, Lotononis bainesii, and Stylosanthes hurnilis were tolerant species in terms of effects on dry matter production. Glycine wightii was a sensitive species and Medicago sativa a very sensitive one. In the whole plant study, plants were grown in Solution culture with a phosphorus concentration of 2 p.p.m., under the above aluminium treatments. Aluminium increased the subsequent uptake of phosphorus (tops+roots) in all species (phosphorus substrate concentration 1 x 10-5M labelled with 32P, 1 and 3 hr uptake periods). Phosphorus uptake in the tops of the four tolerant species was increased by aluminium treatment, and in the two sensitive species it uas reduced. In both the absence and presence of applied aluminium, L. bainesii was the most efficient species per unit weight of root tissue in sorbing total phosphorus, and in addition had the highest efficiency of translocation of phosphorus from roots to tops. S. humilis was also an efficient species. In the excised root study, addition of aluminium to the solution enhanced the sorption of phosphorus by all species. The enhancement was greater in a relatively strong phosphorus solution (2 x 10-4 M) than in a dilute solution (1 x 10-4). The sorption of phosphorus by excised roots of S. humilis from dilute and relatively strong phosphorus substrates was greater than that of other species, both in the absence and presence of added aluminium. L. bainesii was omitted from the excised root experiments.


2002 ◽  
Vol 42 (8) ◽  
pp. 1043 ◽  
Author(s):  
M. Seymour ◽  
K. H. M. Siddique ◽  
N. Brandon ◽  
L. Martin ◽  
E. Jackson

The response of Vicia sativa (cvv. Languedoc, Blanchefleur and Morava) and V. benghalensis (cv. Barloo) seed yield to seeding rate was examined in 9 field experiments across 2 years in south-western Australia. There were 2 types of field experiments: seeding rate (20, 40, 60, 100 and 140 kg/ha) × cultivar (Languedoc, Blanchefleur, and Morava or Barloo), and time of sowing (2 times of sowing of either Languedoc or Blanchefleur) × seeding rate (5,�7.5, 10, 15, 20, 30, 40, 50, 75 and 100 kg/ha).A target density of 40 plants/m2 gave 'optimum' seed yield of vetch in south-western Australia. In high yielding situations, with a yield potential above 1.5 t/ha, the 'optimum' plant density for the early flowering cultivar Languedoc (85–97 days to 50% flowering) was increased to 60 plants/m2. The later flowering cultivar Blanchefleur (95–106 days to 50% flowering) had an optimum plant density of 33 plants/m2 at all sites, regardless of fitted maximum seed yield. Plant density in the range 31–38 plants/m2 was found to be adequate for dry matter production at maturity of Languedoc and Blanchefleur. For the remaining cultivars Barloo and Morava we were unable to determine an average optimum density for either dry matter or seed yield due to insufficient and/or inconsistent data.


Author(s):  
R.E. Fitzgerald

Recent increases in the value of gold have led to renewed interest in gold mining - particularly by the dredging of the river flats bordering West Coast rivers. In any future licensing of such dredging, the rehabilitation of the "destroyed" land will be a major consideration. Nitrogen is the main nutrient limiting the growth of radiata pine on the gold dredge tailings; this paper outlines initial results of an exploratory legume-fertilizer trial on levelled tailings in the Taramakau River valley. Twelve legume species were grown with and without superphosphate (+ MO, Mg and K). Tree lucerne (Cytisus proliferus) , Russell lupin (Lupinus polyphyllus) and yellow tree lupin (L. arboreus) grew well without the application of fertilizer but the pasture legumes had substantially increased dry matter production where P was added - in white clover (Trifolium repens) dry matter production was increased from 5.4 to 8.9 t/ha; and total N was 180 and 310 kg N/ha. Tree nutrition and growth were greatly improved by association with a vigorous legume species, In addition, the presence of legumes improved the appearance of the tailings and with a pasture species grazing potential was created


2009 ◽  
Vol 60 (3) ◽  
pp. 251 ◽  
Author(s):  
C. P. Gunasekera ◽  
R. J. French ◽  
L. D. Martin ◽  
K. H. M. Siddique

The responses to water stress during the post-flowering period of two mustard breeding lines (887.1.6.1 and Muscon) and a commercial canola cv. Monty were tested in the field at Merredin in the low-rainfall Mediterranean-type environment of Western Australia. Three water-stress treatments were imposed using supplemental irrigation and a rain-exclusion shelter. Increasing water stress in the post-flowering period significantly reduced dry matter production and seed yields. Harvest index was slightly increased by mild stress, but reduced back to control levels by severe stress. Pods/plant, seeds/pod, and 1000-seed weight were all reduced by water stress. Dry matter production was higher in mustard than in canola, due to its greater water use and radiation interception. Water-use efficiency (WUE) for dry matter production and radiation-use efficiency (RUE) were higher in mustard than in canola. WUE for dry matter production and RUE were insensitive to the levels of water stress in mustard in this experiment, but declined significantly in canola. The greater water use in mustard and insensitivity of WUE for dry matter production and RUE to water stress were attributed to significantly higher levels of osmotic adjustment in mustard, although osmotic adjustment was also observed in canola. Despite this, canola seed yield was not significantly lower than the seed yield of the better mustard genotype, although stress caused a significantly greater percentage yield reduction in canola. This is because canola had a higher harvest index, which also meant it had higher WUE than mustard for grain production under mild stress. Mustard’s poorer harvest index was due to more of the dry matter being invested in stem and, in the case of cv. Muscon, to a short reproductive duration and a low proportion of pod weight allocated to seed. Canola had significantly higher seed oil concentration than mustard, which meant that it produced higher total oil yield despite sometimes producing lower seed yield. However, its oil concentration was reduced more by stress than mustard’s, so under the most severe stress conditions, both mustard genotypes produced higher total oil yield. Mustard has potential as an oil-producing crop in the low-rainfall Mediterranean-type environments of Western Australia, but improved genotypes, greater harvest index, and greater seed yield are required.


1999 ◽  
Vol 50 (3) ◽  
pp. 375 ◽  
Author(s):  
K. H. M. Siddique ◽  
S. P. Loss ◽  
K. L. Regan ◽  
R. L. Jettner

A range of cool season grain legume species have shown considerable potential for soils unsuitable for the production of narrow-leafed lupin (Lupinus angustifolius L.) at limited sites in the Mediterranean-type environments of south-western Australia. In this study the adaptation of these grain legume species was compared by measuring crop phenology, growth, and yield in field experiments at a total of 36 sites over 3 seasons, with the aim of identifying species with suitable adaptation and seed yield for specific environments. The grain legumes examined appeared to fall into 3 categories: (i) field pea (Pisum sativum L.), faba bean (Vicia faba L.), common vetch (Vicia sativa L.), and narbon bean (Vicia narbonensis L.) clearly had superior seed yield to the other species over a wide number of sites and years across south-western Australia (mean 1.0–2.3 t/ha); (ii) albus lupin (Lupinus albus L.), desi chickpea (Cicer arietinum L.), and Lathyrus cicera, L. sativus, and L. ochrus produced seed yields of 1–1.3 t/ha; and (iii) red lentil (Lens culinaris L.), bitter vetch (Vicia ervilia), and kabuli chickpea (Cicer arietinum L.) generally produced the lowest yields (0.6–1.0 t/ha). There were clear species × environment interactions. At low-yielding sites (<1.4 t/ha), field pea was the highest yielding species, while faba bean often produced the highest seed yields under more favourable conditions at high yielding sites. Lentil, bitter vetch, Lathyrus spp., and desi chickpea showed average response to increasing mean site yield. Soil pH and clay content and rainfall were the environmental factors identified as the most important in determining seed yields. Soil pH and clay content appeared to be especially important in the adaptation of lentil, narbon bean, bitter vetch, and kabuli chickpea, with these species performing best in soils with pH >6.0 and clay contents >15%. Seed yields were positively correlated with dry matter production at maturity across a number of sites (r2 = 0.40, P < 0.01). Future improvements in seed yield of these species are likely to come from management practices that increase dry matter production such as increased plant density and early sowing, and through the development of genotypes with greater tolerance to low winter temperatures, and more rapid phenology, canopy development, and dry matter production than existing commercial cultivars.


2000 ◽  
Vol 40 (7) ◽  
pp. 939 ◽  
Author(s):  
R. A. Ballard ◽  
N. Charman

The ability of 11 species of annual medics (Medicago doliata, M. laciniata, M. littoralis, M. minima, M. orbicularis, M. polymorpha, M. praecox, M. rigidula, M. rigiduloides, M. tornata and M. truncatula) to nodulate and fix nitrogen with naturalised rhizobia from 28 South Australian soils was assessed. The number of rhizobia in the soils was estimated. Medic shoot dry matter production and nodulation were measured, after inoculation of medic seedlings with a soil suspension, in 2 glasshouse experiments. The number of medic rhizobia ranged from 0.4 10 2 to 1.5 10 6 per gram soil. Medicago laciniata was the only medic species tested which was not consistently nodulated by the soil rhizobia. While all the other species formed nodules, they varied widely in their ability to form an effective symbiosis. Symbiotic performance (which indicates how much growth the medic line achieved, when compared to an effective inoculation treatment) of the medic species ranged from 3% (M. rigiduloides) to 67% (M. praecox). Herald (M. littoralis) achieved a symbiotic performance of 49% and it was estimated that this would be insufficient to meet the nitrogen requirements of a Herald-based pasture during early growth. The symbiotic performance of Santiago (M. polymorpha) was low (17%) and erratic (from –6 to 72%). The ability of the rhizobia to form an effective symbiosis varied widely also between soil regions. For example, the rhizobia in Riverland soils resulted in only 31% of the shoot dry matter of those in Eyre Peninsula soils, in association with M. polymorpha. There are significant opportunities to improve the symbiotic performance of a number of the species of annual medics examined in this study. Options to improve the effectiveness of the symbiosis of medics with naturalised soil rhizobia are discussed.


Sign in / Sign up

Export Citation Format

Share Document