Functionality-Composition relationships of wheat flour as a result of variation in sulfur availability

1993 ◽  
Vol 44 (8) ◽  
pp. 1767 ◽  
Author(s):  
F MacRitchie ◽  
RB Gupta

Some recently developed methods for analysing wheat protein composition have been applied to studying the composition/functionality relationships for flours from grain samples of the wheat variety Olympic, grown under differing nitrogen/sulfur fertilizer treatments. In this way, the effects of changing protein composition on functional properties could be followed without the complication of allelic variation. Previous work had established that sulfur deficiency caused an imbalance in dough properties characterized by an increase in dough strength (extensograph maximum resistance, Rmax) and a decrease in extensibility (Ext). In the present study, decreasing flour sulfur content was accompanied by an increase in the ratio of high (HMW) to low (LMW) molecular weight glutenin subunits. As a result, the portion of polymeric proteins (those proteins such as glutenins whose molecules contain multiple polypeptide chains) that is unextractable in SDS-buffer solution (%UPP, a measure of molecular size distribution) also increased with a decrease in sulfur content. A highly significant correlation was found between Rmax and %UPP. In contrast, Rmax showed a high negative correlation with the percentage of polymeric protein in the total protein. Results are generally in agreement with previous studies of wheat samples which varied considerably in genotype but not in environment, thus establishing fundamental relationships between protein composition and dough properties. Extensibility related positively to the percentage of polymeric protein in the flour, but evidence suggested that Ext can be limited by a shift in the molecular weight distribution to too high molecular weight. Reduction in the percentage of polymeric protein in flour (and Ext) as a result of sulfur deficiency was due to a decrease in LMW glutenin subunits which are normally present in greater amounts than the HMW subunits. Dependence of dough mixing and baking performance parameters on protein composition is also reported.

2012 ◽  
Vol 48 (No. 1) ◽  
pp. 23-32 ◽  
Author(s):  
I. Bellil ◽  
M. Chekara Bouziani ◽  
D. Khelifi

Saharan wheats have been studied particularly from a botanical viewpoint. Genotypic identification, classification and genetic diversity studies to date were essentially based on the morphology of the spike and grain. For this, the allelic variation at the glutenin loci was studied in a set of Saharan bread and durum wheats from Algerian oases where this crop has been traditionally cultivated. The high molecular weight and low molecular weight glutenin subunit composition of 40 Saharan bread and 30 durum wheats was determined by SDS-PAGE. In Saharan bread wheats 32 alleles at the six glutenin loci were detected, which in combination resulted in 36 different patterns including 17 for HMW and 23 for LMW glutenin subunits. For the Saharan durum wheats, 29 different alleles were identified for the five glutenin loci studied. Altogether, 29 glutenin patterns were detected, including 13 for HMW-GS and 20 for LMW-GS. Three new alleles were found in Saharan wheats, two in durum wheat at the Glu-B1 and Glu-B3 loci, and one in bread wheat at the Glu-B1 locus. The mean indices of genetic variation at the six loci in bread wheat and at the five loci in durum wheat were 0.59 and 0.63, respectively, showing that Saharan wheats were more diverse. This information could be useful to select Saharan varieties with improved quality and also as a source of genes to develop new lines when breeding for quality.


3 Biotech ◽  
2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Hye-Rang Beom ◽  
Jin Sun Kim ◽  
You-Ran Jang ◽  
Sun-Hyung Lim ◽  
Chang-Kug Kim ◽  
...  

2013 ◽  
Vol 19 (4) ◽  
pp. 553-561 ◽  
Author(s):  
Dragan Zivancev ◽  
Branislava Nikolovski ◽  
Aleksandra Torbica ◽  
Jasna Mastilovic ◽  
Nevena Djukic

Polymeric wheat endosperm proteins, especially the high-molecular-weight glutenin subunits (HMW-GS), are probably the most interesting protein fraction giving the essential information about bread-making quality of wheat flour. A relatively new method that shows a great potential for a fast, reliable and automatable analysis of protein purity, sizing and quantification is microfluidic or Lab-on-a-Chip (LoaC) capillary electrophoresis. This work was aimed to explore the possibilities of implementation of LoaC method to analysis of protein samples isolated from a Serbian common wheat variety, emphasizing the steps that might bring uncertainties and affect reproducibility of obtained glutenin subunits quantitation results. A good resolution of protein bands in a molecular weight range of 14.0 to 220.0 kDa was achieved. The reproducibility of HMW-GS sizing and quantitation were good, with the average coefficient of variation values of 1.2% and 12.2%. The ratio of HMW-GS to low-molecular-weight glutenin subunits (LMW-GS) was about 20%. The investigation ruled out influences of the extract solution addition and the buffer addition steps of the applied method, as well as the individual chip influence on GS quantitation results. However, there was statistically significant difference between HMW-GS quantitation results of multi-step and one-step extraction procedures applied prior to glutenin subunits extraction step.


2013 ◽  
Vol 49 (No. 4) ◽  
pp. 140-148
Author(s):  
V. Dvořáček ◽  
J. Bradová ◽  
I. Capouchová ◽  
A. Prohasková ◽  
L. Papoušková

Using vertical electrophoresis, a set of 22 biotypes heterogeneous according to their gliadin alleles as well as their low-molecular-weight (LMW) and high-molecular-weight (HMW) glutenin subunits were identified in 10 winter wheat varieties registered in the Czech Republic. The effects of individual biotypes and their specific allelic compositions on 16 grain quality parameters were investigated. Inter-varietal differences in particular quality parameters (Zeleny sedimentation, farinograph water absorption, several values of the solvent retention capacity test) were significantly greater than the differences detected among biotypes of each variety. Special attention was given to the LMW glutenin subunits and gliadin alleles and to mutual interactions responsible for significant differences in the tested grain parameters. The results revealed at least one case of significant differences in grain quality parameters among biotypes of eight heterogeneous wheat varieties. This work unambiguously indicates that the high prevalence of wheat biotype(s) with significantly poorer values in some grain parameters can also decrease the expected technological quality of the original wheat variety. In particular, multi-line wheat varieties carrying alleles Glu-B1 (6+8) and Glu-B1 (7+9) or Glu-B3j and Glu-B3g can indicate the possibility of some significant changes in grain quality parameters.


Author(s):  
Dale Zhang ◽  
Jiajia Ren ◽  
Wenjie Li ◽  
Xusen Kang ◽  
Shenglong Bai ◽  
...  

High molecular weight glutenin subunits (HMW-GS) and Low molecular weight glutenin subunits (LMW-GS) in mature grains play important roles in the formation of glutenin macropolymer and gluten quality. To characterize the expressed glutenin genes of the bread wheat variety Xinmai 26 during seed development, in this study, we measured the dough rheological properties of mature grains through farinograph and gluten testing system, and revealed its strong gluten quality. The compositions of HMW-GS and LMW-GS were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Further, a total of 18 full-length transcripts were obtained by third-generation RNA sequencing, including 5 transcripts of HMW-GS genes and 13 transcripts of LMW-GS genes (8 intact genes and 5 pseudogenes). The deduced protein structures of transcript sequences exhibit the typical HMW-GS and LMW-GS structural characteristics. Moreover, a specific functional marker was developed to make better use of the extra cysteine residue of 1Dx5 subunit. This study provides an efficient method to accurately identify glutenin genes in bread wheat through matching full-length transcripts to their spectrum of glutenin, which will be helpful to understand the contributions of glutenin genes to wheat quality.


1996 ◽  
Vol 36 (4) ◽  
pp. 451 ◽  
Author(s):  
CY Liu ◽  
AJ Rathjen

A large set of durum wheat lines (79 including 8 advanced Australian breeding lines) randomly collected from 11 countries and 11 bread wheat cultivars were grown in replicated trials at 2 field locations to compare yield and gluten quality. Gluten strength, as measured by the sodium dodecyl sulfate (SDS)-sedimentation (SDSS) test, varied considerably among the durum lines and was associated with the presence of specific glutenins. Unlike some previous reports, the present study showed that durum wheat cultivars having the high molecular weight (HMW) glutenin subunits coded by Glu-B1 genes such as 13 + 16 and 7 + 8 were highly correlated with improved dough strength, which was consistent with the effect of HMW glutenin subunits on dough quality in bread wheat. Cultivars having the low molecular weight (LMW) glutenin allele LMW-2 (or gliadin band r-45) generally gave stronger gluten than lines with allele LMW-1, as reported by earlier workers. The LMW pattern LMW-IIt gave the strongest glutenin. The combined better alleles at Glu-B1 (coded bands 13 + 16, 7 + 8 v. 6 + 8, 20) and Glu-3 (patterns LMW- II, LMW-IIt v. LMW-I) showed linear cumulative effects for dough strength. All the durum lines studied had lower SDSS values than the bread wheat controls (45.8 v. 76.2 mL), though durum wheats tended to possess higher grain protein concentrations (14.0 v. 11.9%) and gave lower grain yield than bread wheat. The Australian advanced lines had higher yield and better dough strength than durums from other countries except those from CIMMYT. The Australian lines also had 1-1.5% higher protein concentration and equal or better grain yield than the bread wheat, suggesting that these lines had potential for commercial use.


Sign in / Sign up

Export Citation Format

Share Document