scholarly journals Pollinators of Eucalyptus regnans (Myrtaceae), the world's tallest flowering plant species

2009 ◽  
Vol 57 (1) ◽  
pp. 18 ◽  
Author(s):  
A. Rod Griffin ◽  
Andrew B. Hingston ◽  
Clifford P. Ohmart

Insect visitors to the flowers of Eucalyptus regnans F.Muell. in a remnant natural stand were classified into 33 functional pollinator groups according to taxonomic affinity and body size. In total, 92% of insects caught were dipterans; however, most of these were small and did not contribute significantly to pollination. For the majority of taxa, which have short mouthparts and therefore need to intrude themselves into the flower while feeding on nectar, there was a highly significant relationship between body length and the number of E. regnans pollen grains carried on the body. Mean pollen loads ranged from 20 grains per insect for sepsid flies to 84 000 for large tachinid flies. An index of pollen-deposition potential, which is based on population size and pollen load, suggested that the larger tachinid, calliphorid and syrphid flies were the most important pollen vectors and that larger sphecid wasps also played a significant role. Many taxa appeared to contribute little to pollination because they were uncommon and/or did not carry large quantities of pollen. A convention is proposed whereby groups are weighted according to their contribution to total pollen-deposition potential. For E. regnans, a ratio of 5 Diptera/1 Hymenoptera + (Coleoptera/Lepidoptera) is described, with the taxa in parentheses contributing less than 10% of the total.

2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Midori Kobayashi-Kidokoro ◽  
Seigo Higashi

The food habits of the solitary beeCeratina flavipeswere studied by observation on foraging behavior and identifying the pollen grains that they collected. It appeared thatC. flavipestend to collect pollen from particular species; however, they visit multiple flowering species. We analyzed pollen sources from pollen loads of dried specimens from single foraging trips (SFT) and in pollen balls created from a single foraging day (SD). The pollen from all pollen balls in a nest represented the harvest from an entire breeding season (BP). This analysis showed that each bee on average collected pollen from 3.24 (SFTs), 2.02 (SD), and 3.12 (BP) flowering species. Bees collected pollen from a total of 14 flowering plant species. Furthermore, we calculated when pollen balls were created and found no significant interaction between seasonal pollen availability and bee preferences. Moreover, bees had consistent flower preferences, even if the preferred flower was not dominant at all times. These results indicate thatC. flavipesexhibits flower constancy, and therefore, the generalist pollinatorC. flavipescould function like a specialist pollinator.


AoB Plants ◽  
2020 ◽  
Vol 12 (4) ◽  
Author(s):  
Nathália Susin Streher ◽  
Pedro Joaquim Bergamo ◽  
Tia-Lynn Ashman ◽  
Marina Wolowski ◽  
Marlies Sazima

Abstract Co-flowering plant species may interact via pollinators leading to heterospecific pollen transfer with consequences for plant reproduction. What determines the severity of heterospecific pollen effect on conspecific pollen performance is unclear, but it may depend on the phylogenetic relatedness of the interactors (pollen donors and recipient). The heterospecific pollen effect might also depend on the extent to which plants are exposed to heterospecific pollen over ecological or evolutionary timescales. For instance, generalist-pollinated plant species might tolerate heterospecific pollen more than specialists. Here, we tested whether heterospecific pollen effects are stronger between closely related species than phylogenetically distant ones in a tropical highland community. Then, based on these results, we determined whether responses to heterospecific pollen were stronger in generalized vs. specialized plant species. We applied heterospecific pollen from close (congeneric) or distant (different families) donors alone or with conspecific pollen on stigmas of three recipient species (one generalist, Sisyrinchium wettsteinii; and two specialists, Fuchsia campos-portoi and Fuchsia regia) and scored pollen tube performance in styles. In all species, pollen from closely related donors grew pollen tubes to the base of the style indicating a high potential to interfere with seed set. Conversely, distantly related heterospecific pollen had no effect on either specialist Fuchsia species, whereas enhanced performance of conspecific pollen was observed in generalist S. wettsteinii. The strong effect of phylogenetic relatedness of donor and recipient might have obscured the role of pollination specialization, at least for the three species examined here. Therefore, phylogenetic relatedness mediated the effect of heterospecific pollen on post-pollination success, with possible consequences for reproductive trait evolution and community assembly for further studies to explore.


2013 ◽  
Vol 21 (1) ◽  
pp. 41-47
Author(s):  
BK Basnet

Rara National Park is the smallest national park of the country. It is rich in floral and faunal diversity. Rara is one of the sacred lakes and is listed as a Ramsar site. The aim of the study was to compile the representative flora of Rara lake and to present status of available vegetation. The research used both primary and secondary sources of data. Field visit was conducted in June, 2010 during which more than 300 plant specimens were collected. The secondary data were collected from Rara and adjoining area like Gamgadi. These data were thoroughly analyzed to understand the composition of vegetation. The study revealed the existence of about 224 flowering plant species in the area, under 173 genera and 67 families. Compositae was found to be the largest family (21 species and 17 genera) followed by Rosaceae (19 species and 10 genera). DOI: http://dx.doi.org/10.3126/banko.v21i1.9063 Banko Janakari, Vol. 21, No. 1 2011; 41-47


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Jered M Wendte ◽  
Yinwen Zhang ◽  
Lexiang Ji ◽  
Xiuling Shi ◽  
Rashmi R Hazarika ◽  
...  

In many plant species, a subset of transcribed genes are characterized by strictly CG-context DNA methylation, referred to as gene body methylation (gbM). The mechanisms that establish gbM are unclear, yet flowering plant species naturally without gbM lack the DNA methyltransferase, CMT3, which maintains CHG (H = A, C, or T) and not CG methylation at constitutive heterochromatin. Here, we identify the mechanistic basis for gbM establishment by expressing CMT3 in a species naturally lacking CMT3. CMT3 expression reconstituted gbM through a progression of de novo CHG methylation on expressed genes, followed by the accumulation of CG methylation that could be inherited even following loss of the CMT3 transgene. Thus, gbM likely originates from the simultaneous targeting of loci by pathways that promote euchromatin and heterochromatin, which primes genes for the formation of stably inherited epimutations in the form of CG DNA methylation.


2016 ◽  
Vol 23 (2) ◽  
pp. 89-102
Author(s):  
Kuldeep Negi ◽  
Vandana Tiwari ◽  
Puran Mehta ◽  
Rajni Rawat ◽  
Saraswati Ojha ◽  
...  

Uttarakhand is a store house of plant genetic resources of several crop groups including ornamentals and seasonal flowering plant species. A wide range of seasonal flowering plants are being grown in the region because of its various and favourable agro-geo climatic zones. Ornamental plant enhances aesthetic value of our environment. There are 8 developmental blocks and 1082 villages in district Nainital of Uttarakhand. Nainital district, is a part of Kumaun region of Uttarakhand. It lies between 29?0.1' to 29?36' 21'' N latitude and 78?50' 53'' to 80?06' E longitude. More than 7.62 lakh population reside in 4064 km2 of geographical area of district Nainital. The district falls under sub-tropical to temperate zones. During the course of field survey (2013-2015), we came across wide range of seasonal flowering plants mostly belong to exotic origin being grown in the home gardens of natives of the region situated in different agro-ecological niches. The present study highlighted a total of 150 seasonal flowering plants with 120 genera belonging to 50 families. These were arranged alphabetically with botanical names followed by vernacular and trade name, family, origin or native place, nature, season with appropriate remarks of variation in shape, size and colour, method of propagation with economic status.


Author(s):  
Timothy S. George ◽  
◽  
Lawrie K. Brown ◽  
A. Glyn Bengough ◽  
◽  
...  

Root hairs are found on most terrestrial flowering plant species. They form from epidermal cells at a predetermined distance behind the growing root tip in three main patterns. Their presence, pattern, length, density and function are genetically controlled and numerous genes are expressed solely in root hairs. Their growth and proliferation are attenuated by the environment and root hairs growing in soil are generally shorter and less dense than those in laboratory studies. Root hairs have a number of functions including anchorage, root soil contact and bracing to enable roots to penetrate hard soils. However, their primary function is acquisition of nutrients and water, in particular phosphate. They are the site of transporters, exudation of active compounds and infection point of symbiotic microbial interactions. They have a profound effect on rhizosphere characteristics and are a potentially useful target for breeding crops for future agricultural sustainability.


Koedoe ◽  
1977 ◽  
Vol 20 (1) ◽  
Author(s):  
B.L. Penzhorn

Additions to the check list of flowering plants of the Mountain Zebra National Park. Thirteen additional flowering plant species are reported from the Mountain Zebra National Park, increasing the total reported to 371 species.


2018 ◽  
Vol 9 (1) ◽  
pp. 587-597
Author(s):  
Raúl Badillo‐Montaño ◽  
Armando Aguirre ◽  
Miguel A. Munguía‐Rosas

2014 ◽  
Vol 6 (4) ◽  
pp. 428-432 ◽  
Author(s):  
Tiwalade A. ADENIYI ◽  
Peter A. ADEONIPEKUN ◽  
James D. OLOWOKUDEJO ◽  
Idowu S. AKANDE

Data on the prevalence of pollen in the atmosphere is limited and almost non-existent for Lagos State and Nigeria. Pollen grains are known to be highly allergenic and thus they are potential causes of respiratory diseases. To investigate airborne incidence of pollen, so as to construct a pollen calendar and contribute to current trends in the development of aeropalynology/allergy study in Nigeria, three highly populated locations in Shomolu Local Government areas of Lagos State: University of Lagos, Bariga and Gbagada, were sampled. Aero-samplers were harvested monthly from January 2013 to December 2013. After acetolysis treatment and analysis, the total pollen count was 4393, belonging to 38 pollen taxa and 29 families. The main taxa include Poaceae, Cyperaceae, Amaranthaceae, Ludwigia and Alchornea. Monthly pollen counts were highest in October and lowest in June. Almost three-quarters of the total pollen content came from grasses and weeds. This composition reflects the ornamental and grassland flora of the town, as well as the natural vegetation surrounding the urban area. The total pollen concentration correlates positively with the temperature and negatively with the wind, rainfall and relative humidity, which was similar in the dominant taxa Amaranthaceae and Alchornea. Dominant taxa Cyperaceae and Ludwigia have significant positive correlation with wheezing cough. Results from this work will form the basis for a forecast service required to inform and educate the general public and allergy sufferers about pollen distribution in Lagos State.


2019 ◽  
Vol 116 (28) ◽  
pp. 14083-14088 ◽  
Author(s):  
Jennifer R. Mandel ◽  
Rebecca B. Dikow ◽  
Carolina M. Siniscalchi ◽  
Ramhari Thapa ◽  
Linda E. Watson ◽  
...  

The sunflower family, Asteraceae, comprises 10% of all flowering plant species and displays an incredible diversity of form. Asteraceae are clearly monophyletic, yet resolving phylogenetic relationships within the family has proven difficult, hindering our ability to understand its origin and diversification. Recent molecular clock dating has suggested a Cretaceous origin, but the lack of deep sampling of many genes and representative taxa from across the family has impeded the resolution of migration routes and diversifications that led to its global distribution and tremendous diversity. Here we use genomic data from 256 terminals to estimate evolutionary relationships, timing of diversification(s), and biogeographic patterns. Our study places the origin of Asteraceae at ∼83 MYA in the late Cretaceous and reveals that the family underwent a series of explosive radiations during the Eocene which were accompanied by accelerations in diversification rates. The lineages that gave rise to nearly 95% of extant species originated and began diversifying during the middle Eocene, coincident with the ensuing marked cooling during this period. Phylogenetic and biogeographic analyses support a South American origin of the family with subsequent dispersals into North America and then to Asia and Africa, later followed by multiple worldwide dispersals in many directions. The rapid mid-Eocene diversification is aligned with the biogeographic range shift to Africa where many of the modern-day tribes appear to have originated. Our robust phylogeny provides a framework for future studies aimed at understanding the role of the macroevolutionary patterns and processes that generated the enormous species diversity of Asteraceae.


Sign in / Sign up

Export Citation Format

Share Document