Are mesic communities less drought-resistant? A study on moisture relationships in dry sclerophyll forest at Inglewood, South Australia

1962 ◽  
Vol 10 (2) ◽  
pp. 106 ◽  
Author(s):  
HA Martin ◽  
RL Specht

Soil moisture changes under two adjacent forest associations (Eucalyptus obliqua association in the more mesic environment, E. elaeophora association in the more xeric sites) were recorded in the Inglewood area of the Mount Lofty Ranges, South Australia. The evidence indicated that the E. obliqua association had a higher index of evapotranspiration (Itr = Etr/Ew0.75) over most of the range of available water (soil moisture + rainfall) than the E. elaeophora association. The more mesic association consequently completely exhausted the stored soil moisture during periods of low rainfall and had to survive a drought period every year. The other association did not deplete the soil moisture reserves and in an average year, no drought occurred. Characteristic species of the more mesic association must be able to survive this drought period especially during the seedling stage.

1983 ◽  
Vol 101 (2) ◽  
pp. 481-493 ◽  
Author(s):  
D. G. M. Hall ◽  
R. J. A. Jones

SUMMARYThe moisture regimes of three soils under grassland in midland England were investigated using a neutron probe moisture meter from May 1976 until August 1978. The main aim of the experiments was to compare the differential build-up of moisture deficits in the three soils of different texture by monitoring moisture extraction down to 1·50 m depth. The moisture deficits measured by neutron probe were also compared with those predicted from meteorological data using the Grindley (1970) model.The sandy (Newport) soil dried out more quickly and more completely than the clayey (Worcester) or fine loamy over clayey stagnogley (Salop) soil, particularly in 1976. This reflected the fact that the former had the smallest available water, most of which is held at low suctions, whereas the Salop soil, with much of its water bound at high suctions, continued to supply small amounts to plant roots when the available water in both the other soils was exhausted.The soil moisture deficits determined from neutron probe measurements were much larger at all three sites in 1976 than in the following 2 years. The deficit increased more slowly in the Salop soil than in the other two in the early part of 1976 and more slowly than predicted by the Grindley model. However, during July and August of the same year, deficits in the Salop and Worcester soils increased more quickly than predicted and maximum deficits were in proportion to the available water capacities of the three soils. Deficits in 1978 were very small (less than 70 mm) in all three soils because of the wetter weather.The results of this neutron probe study clearly show that the patterns of moisture extraction and the maximum deficits which developed in the three soils, particularly in 1976, are closely related to their physical properties, as determined from undisturbed soil cores.


1906 ◽  
Vol 1 (4) ◽  
pp. 454-469 ◽  
Author(s):  
H. M. Leake

In a stretch of arable lands like those of the Ganges Valley, although damage may be caused by occasional floods, which are sudden and of short duration, the more general, and by far the most serious loss is due to deficiency of moisture of the soil: thus the relation of the soil to soil moisture becomes of more than ordinary importance. Dr Voelcker, in his Report on Indian Agriculture, remarks: “In India the relation of soils to moisture acquires a greater significance than almost anywhere else.......” This relation is fundamental, for on it depends the methods for the conservation of soil moisture, for the economical application of irrigation water, and for the treatment of barren and salt lands—all problems of direct interest to agriculturists in the plains of Northern India. The methods for dealing with these problems must be largely—if not entirely—empirical until such time as the behaviour of the soil in its relation to moisture is investigated. The problem in all its various branches is enormous, and in a country in which the seasons follow each other with such rapidity, and vary the one from the other in so marked a manner, it frequently happens that a particular point, if not determined within a period of a few days, must await solution until the following year.


2012 ◽  
Vol 21 (6) ◽  
pp. 755 ◽  
Author(s):  
Penny J. Watson ◽  
Sandra H. Penman ◽  
Ross A. Bradstock

Over the last decade, fire managers in Australia have embraced the concept of ‘fuel hazard’, and guides for its assessment have been produced. The reliability of these new metrics, however, remains to be determined. This study compared fuel hazard ratings generated by five assessment teams using two Australian hazard assessment methods, in two dry sclerophyll forest sites on Sydney’s urban fringe. Attributes that underpin hazard scores, such as cover and height of various fuel layers, were also assessed. We found significant differences between teams on most variables, including hazard scores. These differences were more apparent when fuel hazard assessments focussed on individual fuel layers than when teams’ assessments were summarised into an overall fuel hazard score. Ratings of surface (litter) fuel hazard were higher when one assessment method was used than when assessors employed the other; however, ratings of elevated (shrub) and bark fuel hazard were relatively consistent across assessment methods. Fuel load estimates based on the two hazard assessment methods differed considerably, with differences between teams also significant. Inconsistency in scoring fuel hazard may lead to discrepancies in a range of management applications, which in turn may affect firefighting safety and effectiveness.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Alice Mufur Magha ◽  
Primus Azinwi Tamfuh ◽  
Lionelle Estelle Mamdem ◽  
Marie Christy Shey Yefon ◽  
Bertrand Kenzong ◽  
...  

Water budgeting in agriculture requires local soil moisture information as crops depend mainly on moisture available at root level. The present paper aims to evaluate the soil moisture characteristics of Gleysols in the Bamenda (Cameroon) wetlands and to evaluate the link between soil moisture content and selected soil characteristics affecting crop production. The work was conducted in the field and laboratory, and data were analyzed by simple descriptive statistics. The main results showed that the soils had a silty clayey to clayey texture, high bulk density, high soil organic carbon content, and high soil organic carbon stocks. The big difference between moisture contents at wilting point and at field capacity testified to very high plant-available water content. Also, the soils displayed very high contents of readily available water and water storage contents. The soil moisture characteristics give sigmoid curves and enabled noting that the Gleysols attain their full water saturation at a range of 57.68 to 91.70% of dry soil. Clay and SOC contents show a significant positive correlation with most of the soil moisture characteristics, indicating that these soil properties are important for soil water retention. Particle density, coarse fragments, and sand contents correlated negatively with the soil moisture characteristics, suggesting that they decrease soil water-holding capacity. The principal component analysis (PCA) enabled reducing 17 variables described to only three principal components (PCs) explaining 73.73% of the total variance; the first PC alone expressed 45.12% of the total variance, associating clay, SOC, and six soil moisture characteristics, thus portraying a deep correlation between these eight variables. Construction of contoured ditches, deep tillage, and raised ridges management techniques during the rainy season while channeling water from nearby water bodies into the farmland, opportunity cropping, and usage of water cans and other irrigation strategies are used during the dry season to combat water constraints.


1987 ◽  
Vol 67 (1) ◽  
pp. 43-54 ◽  
Author(s):  
C. P. MAULÉ ◽  
D. S. CHANASYK

Two simple techniques for separating soil moisture loss into drainage and evapotranspiration for cropped conditions were compared. The study was conducted during May through September 1983 at Ellerslie, Alberta. One technique, the field capacity method, utilized soil tension at − 4 kPa to demarcate the cessation of drainage; the other technique, the gradient method, utilized changes in soil moisture status relative to fallow conditions, to mark the onset of moisture extraction by roots. Both methods estimated similar amounts of drainage and evapotranspiration for the barley plots. Application and thus proper evaluation of these two methods were limited as more than 83% of the total drainage occurred during a 3-wk period in which only the Penman method for estimating evapotranspiration could be used. Key words: Water balance, drainage, evapotranspiration, field capacity method, gradient method


Author(s):  
Ygor Henrique Leal

Biological fertilizers promote several benefits to the soil, and one of the ways to evaluate their quality is to determine the edaphic respiration. The present study aimed to evaluate edaphic respiration in bell pepper cultivation under doses and times of application of biological fertilizers. Two experiments were performed with applications of biological fertilizers prepared from manure and enriched organic compost, one using bovine manure (BM) and the other, sheep manure (SM). The experimental design used was in randomized blocks, in a 4 x 3 + 1 factorial scheme, with three replications, referring to the doses of biological fertilizers (100, 200, 300 and 400 dm³ ha-1), application times (0, 30 and 60 days after transplanting – DAT) and the absolute control. The following variables were evaluated during the night and day: soil surface temperature (Tsurf) and 10 cm deep (T10), soil moisture (M) and edaphic respiration (ER). SM provided the highest ER in the two shifts evaluated. The use of 400 and 300 dm³ ha-1 of SM, at times of 0 and 30 DAT, respectively, provided greater edaphic respiration in relation to the absence of manure during the day.


2021 ◽  
pp. 1-44
Author(s):  
Yuqing Zhang ◽  
Qinglong You ◽  
Guangxiong Mao ◽  
Changchun Chen ◽  
Xin Li ◽  
...  

AbstractIt is essential to assess flash drought risk based on a reliable flash drought intensity (severity) index incorporating comprehensive information of the rapid decline (“flash”) in soil moisture towards drought conditions and soil moisture thresholds belonging to the “drought” category. In this study, we used the Gan River Basin as an example to define a flash drought intensity index that can be calculated for individual time steps (pentads) during a flash drought period over a given grid (or station). The severity of a complete flash drought event is the sum of the intensity values during the flash drought. We explored the spatial and temporal characteristics of flash droughts with different grades based on their respective severities. The results show that decreases in total cloud cover, precipitation, and relative humidity, as well as increases in 500 hPa geopotential height, convective inhibition, temperature, vapour pressure deficit, and wind speed can create favorable conditions for the occurrence of flash droughts. Although flash droughts are relatively frequent in the central and southern parts of the basin, the severity is relatively high in the northern part of the basin due to longer duration. Flash drought severity shows a slightly downward trend due to decreases in frequency, duration, and intensity from 1961 to 2018. Extreme and exceptional flash droughts decrease significantly while moderate and severe flash droughts trend slightly upward. Flash drought severity appears to be more affected by the interaction between duration and intensity as the grade increases from mild to severe. The frequency and duration of flash droughts are higher in July to October. The southern part of the basin is more prone to moderate and severe flash droughts, while the northern parts of the basin are more vulnerable to extreme and exceptional flash droughts due to longer durations and greater severities than other parts. Moderate, severe, extreme, and exceptional flash droughts occurred approximately every 3-6, 5-15, 10-50, and 30-200 year intervals, respectively, based on the copula analysis.


2019 ◽  
Vol 40 (3) ◽  
pp. 1115
Author(s):  
Arthur Carniato Sanches ◽  
Débora Pantojo de Souza ◽  
Fernanda Lamede Ferreira de Jesus ◽  
Fernando Campos Mendonça ◽  
Eder Pereira Gomes ◽  
...  

Soil moisture determination is essential for a good use of available water resources. In this regard, the use of frequency domain reflectometry (FDR) probes has as advantages mobility and practicality in relation to lysimeters. The experiment was carried out between April and June 2016 at the Luiz de Queiroz College of Agriculture (ESALQ/USP), located in Piracicaba, SP at the geographical coordinates 22°42?14.6? S and 47°37?24.1? W and altitude of 546 m. This study aimed to assess these FDR probes to estimate water consumption in comparison to measurements by weighing lysimeters (ETcLys) and reference evapotranspiration (ETo) in Mombaça and Bermuda grass pastures under single cultivation and overseeded with oat and ryegrass. Soil moisture was assessed daily by FDR probes by estimating crop evapotranspiration (ETcFDR probe) from soil water balance calculation, which was correlated with ETcLys and ETo (Penman-Monteith, FAO 56). For all treatments, FDR probes presented the highest water consumptions when compared to the other two evapotranspiration methods, with accumulations of 126.5 and 125.6 mm for single and overseeded Mombaça grass, respectively. For Bermuda grass, water consumption was 123.4 mm in the single cultivation and 128.5 mm when overseeded. The method of estimating evapotranspiration by FDR probes showed good correlations with ETo and ETcLys.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Xuerui Wu ◽  
Shuanggen Jin

In the past two decades, global navigation satellite system-reflectometry (GNSS-R) has emerged as a new remote sensing technique for soil moisture monitoring. Some experiments showed that the antenna of V polarization is more favorable to receive the reflected signals, and the interference pattern technique (IPT) was used for soil moisture and retrieval of other geophysical parameters. Meanwhile, the lower satellite elevation angles are most impacted by the multipath. However, electromagnetic theoretical properties are not clear for GNSS-R soil moisture retrieval. In this paper, the advanced integral equation model (AIEM) is employed using the wave-synthesis technique to simulate different polarimetric scatterings in the specular directions. Results show when the incident angles are larger than 70°, scattering at RR polarization (the transmitted signal is right-hand circular polarization (RHCP), while the received one is also RHCP) is larger than that at LR polarization (the transmitted signal is RHCP, while the received one is left-hand circular polarization (LHCP)), while scattering at LR polarization is larger than that at RR polarization for the other incident angles (1°∼70°). There is an apparent dip for VV and VR scatterings due to the Brewster angle, which will result in the notch in the final receiving power, and this phenomenon can be used for soil moisture retrieval or vegetation corrections. The volumetric soil moisture (vms) effects on their scattering are also presented. The larger soil moisture will result in lower scattering at RR polarization, and this is very different from the scattering of the other polarizations. It is interesting to note that the surface correlation function only affects the amplitudes of the scattering coefficients at much less level, but it has no effects on the angular trends of RR and LR polarizations.


Sign in / Sign up

Export Citation Format

Share Document