DNA Scission Chemistry and EPR Studies of Four New Bis(2,6-Dimethoxyhydroquinone - 3-Mercaptoacetic Acid) - Peptide Conjugates

2004 ◽  
Vol 57 (3) ◽  
pp. 243
Author(s):  
Yu-Fei Song

In an effort to investigate the use of short peptide chains as carriers of new antitumour agents, four tripeptide cytotoxic agent conjugates, namely DMQ–MA–Lys(DMQ–MA)–Lys(Cbz)–Arg–OMe, DMQ–MA–Lys(DMQ–MA)–Phe–Arg–OMe, DMQ–MA–Lys(DMQ–MA)–Ile–Arg–OMe, and DMQ–MA–Lys(DMQ–MA)–Val–Arg–OMe, were synthesized. The cytotoxic agent conjugated to the N-terminal, and the ξ-amino group of lysine of the tripeptides was 2,6-dimethoxyhydroquinone–3-mercaptoacetic acid (DMQ–MA). The tripeptides were synthesized by coupling protected amino acid residues in solution according to Pfp/DCC methods (where Pfp refers to pentafluorophenol and DCC refers to N,N′-dicyclohexylcarbodiimide). DNA scission chemistry showed that these compounds were able to cleave supercoiled DNA into open-circular form in drug concentrations as low as 5–20 μM without addition of H2O2 or UV irradiation. DNA cleavage was clearly inhibited when hydroxyl radical scavengers such as glycerol and sodium benzoate were added to the reaction system. When the drugs were added to rhodamine B, the UV absorbance and fluorescence intensity of rhodamine B decreased quickly due to the degradation caused by the hydroxyl radicals. Electron paramagnetic resonance (EPR) experiments employing the spin-trap agent 5,5-dimethyl-1-pyrroline N-oxide (DMPO) showed that the signal intensity of the hydroxyl radicals generated from these newly synthesized DMQ–MA–peptide compounds was a non-linear function of ascorbic acid concentration. Deoxyribonucleic acid binding constants of these compounds were in the 104 M–1 range. It was concluded that DNA cleavage was not related to the ability of these drugs to produce hydroxyl radicals exclusively; indeed, it was related to their ability to produce various radicals and reactive species.

Molecules ◽  
2019 ◽  
Vol 24 (6) ◽  
pp. 1148 ◽  
Author(s):  
Anton Misak ◽  
Lucia Kurakova ◽  
Eduard Goffa ◽  
Vlasta Brezova ◽  
Marian Grman ◽  
...  

Doxycycline (DOXY) is an antibiotic routinely prescribed in human and veterinary medicine for antibacterial treatment, but it has also numerous side effects that include oxidative stress, inflammation, cancer or hypoxia-induced injury. Endogenously produced hydrogen sulfide (H2S) and polysulfides affect similar biological processes, in which reactive oxygen species (ROS) play a role. Herein, we have studied the interaction of DOXY with H2S (Na2S) or polysulfides (Na2S2, Na2S3 and Na2S4) to gain insights into the biological effects of intermediates/products that they generate. To achieve this, UV-VIS, EPR spectroscopy and plasmid DNA (pDNA) cleavage assay were employed. Na2S or Na2S2 in a mixture with DOXY, depending on ratio, concentration and time, displayed bell-shape kinetics in terms of producing/scavenging superoxide and hydroxyl radicals and decomposing hydrogen peroxide. In contrast, the effects of individual compounds (except for Na2S2) were hardly observable. In addition, DOXY, as well as oxytetracycline and tetracycline, interacting with Na2S or other studied polysulfides reduced the •cPTIO radical. Tetracyclines induced pDNA cleavage in the presence of Na2S. Interestingly, they inhibited pDNA cleavage induced by other polysulfides. In conclusion, sulfide and polysulfides interacting with tetracyclines produce/scavenge free radicals, indicating a consequence for free radical biology under conditions of ROS production and tetracyclines administration.


2018 ◽  
Vol 54 (95) ◽  
pp. 13411-13414 ◽  
Author(s):  
S. Leichnitz ◽  
J. Heinrich ◽  
N. Kulak

ROS quench assays for metal-based DNA cleavage show low selectivity and reliability – a fluorogenic assay was thus developed to reliably, selectively and sensitively detect H2O2 and HO˙.


2015 ◽  
Author(s):  
◽  
Sinegugu Khulu

Human Serum Albumin (HSA) predominantly found in the blood plasma proteins, acts as a carrier for many drugs. In the present work binding interactions of eight arylpropionate non-steroidal anti-inflammatory drugs (NSAIDs) were studied with Human Serum Albumin HSA using Capillary Electrophoresis (CE) under physiological conditions. The concentration of HSA was kept constant (525 μM) whereas the drug concentrations were varied between 50-300 μM in each case. The Frontal analysis (FA) and Capillary Zone Electrophoresis (CZE) modes of CE were applied together with a mathematical modelling of the experimental results with a view to obtaining pharmacokinetic properties of each drug. The binding order of the drugs to HSA were established with the three methods together with the mathematical approach. Our studies revealed the presence of more than one binding sites for some of the available drugs. Additionally, molecular docking studies were conducted to establish the binding conformations of drugs in the binding pocket of the HSA. A very good correlation between the computed binding energies (docking) and the experimental binding constants were observed throughout this study. The logK values for all eight drugs were ranging from 3.37 - 4.56 for FA, 3.16 – 4.39 for CZE, and 3.48 – 5.30 for computational studies.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Minghua Zhou ◽  
Jun Zhang ◽  
Bei Cheng ◽  
Huogen Yu

Mesoporous Au-TiO2nanocomposite plasmonic photocatalyst with visible-light photoactivity was prepared by a simple spray hydrolytic method using photoreduction technique at90∘C. The prepared samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and N2adsorption-desorption isotherms. The formation of hydroxyl radicals (•OH) on the surface of visible-light illuminated Au-TiO2nanocomposites was detected by the luminescence technique using terephthalic acid as probe molecules. The photocatalytic activity was evaluated by photocatalytic decolorization of Rhodamine-B (RhB) aqueous solution under visible-light irradiation (λ >  420 nm). The results revealed that the TiO2could be crystallizedviaspray hydrolysis method, and the photoreduction technique was facilitated to prepare Au nanoparticles in the mesoporous TiO2at90∘C. The light absorption, the formation rate of hydroxyl radicals, and photocatalytic decolorization of Rhodamine-B aqueous solution were significantly enhanced by those embedded Au nanoparticles in the Au-TiO2nanocomposites. The prepared Au-TiO2nanocomposites exhibit a highly visible-light photocatalytic activity for photocatalytic degradation of RhB in water, and their photocatalytic activity is higher than that of the pristine TiO2nanoparticles due to the surface plasmon resonance.


2007 ◽  
Vol 51 (5) ◽  
pp. 1643-1648 ◽  
Author(s):  
Stéphanie Matrat ◽  
Stéphanie Petrella ◽  
Emmanuelle Cambau ◽  
Wladimir Sougakoff ◽  
Vincent Jarlier ◽  
...  

ABSTRACT Mycobacterium leprae, the causative agent of leprosy, is noncultivable in vitro; therefore, evaluation of antibiotic activity against M. leprae relies mainly upon the mouse footpad system, which requires at least 12 months before the results become available. We have developed an in vitro assay for studying the activities of quinolones against the DNA gyrase of M. leprae. We overexpressed in Escherichia coli the M. leprae GyrA and GyrB subunits separately as His-tagged proteins by using a pET plasmid carrying the gyrA and gyrB genes. The soluble 97.5-kDa GyrA and 74.5-kDa GyrB subunits were purified by nickel chelate chromatography and were reconstituted as an enzyme with DNA supercoiling activity. Based on the drug concentrations that inhibited DNA supercoiling by 50% or that induced DNA cleavage by 25%, the 13 quinolones tested clustered into three groups. Analysis of the quinolone structure-activity relationship demonstrates that the most active quinolones against M. leprae DNA gyrase share the following structural features: a substituted carbon at position 8, a cyclopropyl substituent at N-1, a fluorine at C-6, and a substituent ring at C-7. We conclude that the assays based on DNA supercoiling inhibition and drug-induced DNA cleavage on purified M. leprae DNA gyrase are rapid, efficient, and safe methods for the screening of quinolone derivatives with potential in vivo activities against M. leprae.


2001 ◽  
Vol 12 (6) ◽  
pp. 870-882 ◽  
Author(s):  
Andrew Minnock ◽  
Li-Seng Lin ◽  
Julie Morgan ◽  
Stephen D. G. Crow ◽  
Michael J. Waring ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2300
Author(s):  
Shun-An Chang ◽  
Po-Yu Wen ◽  
Tsunghsueh Wu ◽  
Yang-Wei Lin

A new composite by coupling chalcopyrite (CuFeS2) with silver phosphate (Ag3PO4) (CuFeS2/Ag3PO4) was proposed by using a cyclic microwave heating method. The prepared composites were characterized by scanning and transmission electron microscopy and X-ray diffraction, Fourier-transform infrared, UV–Vis diffuse reflectance spectroscopy, and X-ray photoelectron spectroscopy. Under optimum conditions and 2.5 W irradiation (wavelength length > 420 nm, power density = 0.38 Wcm−2), 96% of rhodamine B (RhB) was degraded by CuFeS2/Ag3PO4 within a 1 min photo-Fenton reaction, better than the performance of Ag3PO4 (25% degradation within 10 min), CuFeS2 (87.7% degradation within 1 min), and mechanically mixed CuFeS2/Ag3PO4 catalyst. RhB degradation mainly depended on the amount of hydroxyl radicals generated from the Fenton reaction. The degradation mechanism of CuFeS2/Ag3PO4 from the photo-Fenton reaction was deduced using a free radical trapping experiment, the chemical reaction of coumarin, and photocurrent and luminescence response. The incorporation of CuFeS2 in Ag3PO4 enhanced the charge separation of Ag3PO4 and reduced Ag3PO4 photocorrosion as the photogenerated electrons on Ag3PO4 were transferred to regenerate Cu2+/Fe3+ ions produced from the Fenton reaction to Cu+/Fe2+ ions, thus simultaneously maintaining the CuFeS2 intact. This demonstrates the synergistic effect on material stability. However, hydroxyl radicals were produced by both the photogenerated holes of Ag3PO4 and the Fenton reaction of CuFeS2 as another synergistic effect in catalysis. Notably, the degradation performance and the reusability of CuFeS2/Ag3PO4 were promoted. The practical applications of this new material were demonstrated from the effective performance of CuFeS2/Ag3PO4 composites in degrading various dyestuffs (90–98.9% degradation within 10 min) and dyes in environmental water samples (tap water, river water, pond water, seawater, treated wastewater) through enhanced the Fenton reaction under sunlight irradiation.


Sign in / Sign up

Export Citation Format

Share Document