Synthesis and Characterization of Some Metal Complexes of 4,5-Diazafluoren-9-one and their Biological Effects on Human Carcinoma Cells

2008 ◽  
Vol 61 (12) ◽  
pp. 975 ◽  
Author(s):  
Guo-Liang Lu ◽  
Cheuk-Lam Ho ◽  
Qiwei Wang ◽  
Wai-Yeung Wong ◽  
Chung-Hin Chui ◽  
...  

Three new transition metal complexes of 4,5-diazafluoren-9-one, [(DAFO)PdCl2], [(DAFO)PtCl2], and [(DAFO)ZnCl2], were prepared in good yields by the reactions between appropriate metal chloride precursors and 4,5-diazafluoren-9-one under ambient conditions. The structures of these metal complexes were established by spectroscopic (Fourier-transform IR, NMR, and fast-atom bombardment mass spectrometry) techniques. The possible biological activity of these compounds on three human cancer cell lines including Hep3B, MDAMB-231, and SKHep-1 was investigated. The results obtained showed that both zinc- and platinum-containing compounds exhibit a similar growth inhibitory effect on these three cancer cell lines when compared with the prototypical cis-platin. In contrast, the corresponding palladium congener is virtually biologically inactive in these trials.

2021 ◽  
Vol 22 (14) ◽  
pp. 7631
Author(s):  
Lisa Wolff ◽  
Siva Sankar Murthy Bandaru ◽  
Elias Eger ◽  
Hoai-Nhi Lam ◽  
Martin Napierkowski ◽  
...  

Pentathiepins are polysulfur-containing compounds that exert antiproliferative and cytotoxic activity in cancer cells, induce oxidative stress and apoptosis, and inhibit glutathione peroxidase (GPx1). This renders them promising candidates for anticancer drug development. However, the biological effects and how they intertwine have not yet been systematically assessed in diverse cancer cell lines. In this study, six novel pentathiepins were synthesized to suit particular requirements such as fluorescent properties or improved water solubility. Structural elucidation by X-ray crystallography was successful for three derivatives. All six underwent extensive biological evaluation in 14 human cancer cell lines. These studies included investigating the inhibition of GPx1 and cell proliferation, cytotoxicity, and the induction of ROS and DNA strand breaks. Furthermore, selected hallmarks of apoptosis and the impact on cell cycle progression were studied. All six pentathiepins exerted high cytotoxic and antiproliferative activity, while five also strongly inhibited GPx1. There is a clear connection between the potential to provoke oxidative stress and damage to DNA in the form of single- and double-strand breaks. Additionally, these studies support apoptosis but not ferroptosis as the mechanism of cell death in some of the cell lines. As the various pentathiepins give rise to different biological responses, modulation of the biological effects depends on the distinct chemical structures fused to the sulfur ring. This may allow for an optimization of the anticancer activity of pentathiepins in the future.


Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 849 ◽  
Author(s):  
Florence N. Mbaoji ◽  
Steven Behnisch-Cornwell ◽  
Adaobi C. Ezike ◽  
Chukwuemeka S. Nworu ◽  
Patrick J. Bednarski

In western Africa ethnomedicine, Lannea barteri Oliv. (Anacardiaceae) is believed to have activity against gastrointestinal, neurological and endocrine diseases. Previous studies on this plant have revealed antimicrobial, anticholinestrase, anticonvulsant, antioxidant and anti-inflammatory activities. However, the anticancer potential of L. barteri has not been studied to date. The aim of this study was to evaluate the anticancer potential of hot and cold extracts and silica gel column chromatographic fractions of L. barteri leaf and stem bark. The extracts and fractions were tested for anticancer activity by using the crystal violet cell proliferation assay on four adherent human carcinoma cell lines—5637 (bladder), KYSE 70 (oesophagus), SiSo (cervical) and HepG2 (hepatic). The inhibitory concentration (IC50) of fractions IH, 1I, 2E and 2F were: 3.75 ± 1.33, 3.88 ± 2.15, 0.53 ± 0.41, and 0.42 ± 0.45 µg/mL against KYSE 70 and 1.04 ± 0.94, 2.69 ± 1.17, 2.38 ± 3.64, 2.17 ± 1.92 µg/mL against SiSo cell lines respectively. Fraction 2E showed weak apoptotic activity at double the IC50 and some sign of cell cycle arrest in the G2/M phase. Thus, phytoconstituents of L. barteri leaf and stem bark can inhibit the proliferation of cancer cell lines indicating the presence of possible anticancer agents in this plant.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
A. Byczek ◽  
J. Zawisza-Puchalka ◽  
A. Gruca ◽  
K. Papaj ◽  
G. Grynkiewicz ◽  
...  

Our previous studies on antiproliferative properties of genistein derivatives substituted at C7 hydroxyl group of the ring A revealed some compounds with antimitotic properties. The aim of this work was to synthesize their analogues substituted at the 4′-position of the ring B in genistein and to define their antiproliferative mechanism of action in selected cancer cell linesin vitro. C4′-substituted glycoconjugates were obtained in a three-step procedure: (1) alkylation with anω-bromoester; (2) deacylation; (3) Ferrier-type rearrangement glycosylation with acylated glycals. Biological effects including antiproliferative effects of the compounds, cell cycle, DNA lesions (ATM activation, H2A.X phosphorylation, and micronuclei formation), and autophagy were studied in human cancer cell lines. Some of the tested derivatives potently inhibited cell proliferation. The presence of a substituent at the 4′-position of the ring B in genistein correlated to a p53-independent G1 cell-cycle arrest. The derivatives substituted at C4′ did not induce DNA lesions and appeared to be nongenotoxic. The tested compounds induced autophagy and caused remarkable decrease of cell volume.


Author(s):  
Jialin Zang ◽  
Ming Bu ◽  
Jifang Yang ◽  
Lu Han ◽  
Zhen Lv

A series of novel 2-(thiophen-2-yl)-4H-chromen-3-yl-sulfonate derivatives (4a-4n) were synthesized and investigated for their in vitro free radical scavenging potential as well as cytotoxic efficacies against selected cancer cell lines. The cytotoxicity of the 4H-chromene derivatives (4a‑4n) was evaluated according to three human cancer cell lines (HepG2, A549, HeLa) by utilizing a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Accordingly, part of the results exhibited better cytotoxic activities than that of the positive controls (4H-chromen-4-one and apigenin). Among them, compounds 4c-4g exhibited better training to the positive control against the three human cancer cell lines (half maximal inhibitory concentration (IC50) = 3.87 ± 0.12 to 21.38 ± 0.52 μM). Moreover, the extract of the 4H-chromene derivatives (4a‑4n) showed better activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2’-azino-bis-3‑ethylbenzothiazoline-6-sulfonic acid (ABTS) in antioxidant assays compared to that of the positive control ascorbic acid (IC50 = 12.72 ± 0.27, 5.09 ± 0.21 μg mL-1). Thus, it can be confirmed from the bioassay results that the overall structural design, as well as proper substitution, is crucial in delivering anticipated biological effects. In this regard, spectroscopic techniques such as 1H nuclear magnetic resonance (NMR), 13C NMR, and high-resolution mass spectrometry (HRMS) were also carried out to confirm the final structures.


2007 ◽  
Vol 4 (1) ◽  
pp. 16-20 ◽  
Author(s):  
Junhui Chen ◽  
Shaobin Wang ◽  
Dongyang Chen ◽  
Guisheng Chang ◽  
Qingfeng Xin ◽  
...  

2004 ◽  
Vol 2 (8) ◽  
pp. 166
Author(s):  
M. Gunaratnam ◽  
O. Greciano ◽  
C. Martins ◽  
C.M. Schultes ◽  
S. Neidle ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document