Synthesis and Properties of Fullerene-Rich Dendrimers

2009 ◽  
Vol 62 (7) ◽  
pp. 605 ◽  
Author(s):  
Michel Holler ◽  
Jean-François Nierengarten

Owing to their peculiar electronic properties, fullerene derivatives are attractive building blocks for dendrimer chemistry. Whereas, for the main part, the fullerene-containing dendrimers reported so far have been prepared with a C60 core, dendritic structures with fullerene units at their surface or with C60 spheres in the dendritic branches have been more scarcely considered. This is mainly associated with the difficulties related to the synthesis of fullerene-rich molecules. In this review, the most recent developments on the molecular engineering of fullerene-rich dendrons and dendrimers are presented to illustrate the current state-of-the-art of fullerene chemistry for the preparation of new dendritic materials.

2003 ◽  
Vol 773 ◽  
Author(s):  
C. Tamerler ◽  
S. Dinçer ◽  
D. Heidel ◽  
N. Karagûler ◽  
M. Sarikaya

AbstractProteins, one of the building blocks in organisms, not only control the assembly in biological systems but also provide most of their complex functions. It may be possible to assemble materials for practical technological applications utilizing the unique advantages provided by proteins. Here we discuss molecular biomimetic pathways in the quest for imitating biology at the molecular scale via protein engineering. We use combinatorial biology protocols to select short polypeptides that have affinity to inorganic materials and use them in assembling novel hybrid materials. We give an overview of some of the recent developments of molecular engineering towards this goal. Inorganic surface specific proteins were identified by using cell surface and phage display technologies. Examples of metal and metal oxide specific polypeptides were represented with an emphasis on certain level of specificities. The recognition and self assembling characteristics of these inorganic-binding proteins would be employed in develeopment of hybrid multifunctional materials for novel bio- and nano-technological applications.


Author(s):  
Sergey V. Dorozhkin

There has been much recent activity in the research area of nanoparticles and nanocrystalline materials, in many fields of science and technology. This is due to their outstanding and unique physical, mechanical, chemical and biological characteristics. Recent developments in biomineralization have demonstrated that nano-sized particles play an important role in the formation of the hard tissues of animals. It is well established that the basic inorganic building blocks of bones and teeth of mammals are nano-sized and nanocrystalline calcium orthophosphates (in the form of apatites) of a biological origin. In mammals, tens to hundreds of nanocrystals of biological apatite are found to combine into self-assembled structures under the control of bio-organic matrixes. It was also confirmed experimentally that the structure of both dental enamel and bones could be mimicked by an oriented aggregation of nano-sized calcium orthophosphates, determined by the biomolecules. The application and prospective use of nano-sized and nanocrystalline calcium orthophosphates for clinical repair of damaged bones and teeth are also known. For example, a greater viability and a better proliferation of various cells were detected on smaller crystals of calcium orthophosphates. Furthermore, studies revealed that the differentiation of various cells was promoted by nano-sized calcium orthophosphates. Thus, the nano-sized and nanocrystalline forms of calcium orthophosphates have the potential to revolutionize the field of hard tissue engineering, in areas ranging from bone repair and augmentation to controlled drug delivery devices. This paper reviews the current state of knowledge and recent developments of various nano-sized and nanocrystalline calcium orthophosphates, covering topics from the synthesis and characterization to biomedical and clinical applications. This review also provides possible directions of future research and development.


2019 ◽  
Vol 21 (1) ◽  
pp. 107-120 ◽  
Author(s):  
Matilda Florentin ◽  
Michael S Kostapanos ◽  
Panagiotis Anagnostis ◽  
George Liamis

Author(s):  
David P. Nickerson ◽  
Martin L. Buist

In this era of widespread broadband Internet penetration and powerful Web browsers on most desktops, a shift in the publication paradigm for physiome-style models is envisaged. No longer will model authors simply submit an essentially textural description of the development and behaviour of their model. Rather, they will submit a complete working implementation of the model encoded and annotated according to the various standards adopted by the physiome project, accompanied by a traditional human-readable summary of the key scientific goals and outcomes of the work. While the final published, peer-reviewed article will look little different to the reader, in this new paradigm, both reviewers and readers will be able to interact with, use and extend the models in ways that are not currently possible. Here, we review recent developments that are laying the foundations for this new model publication paradigm. Initial developments have focused on the publication of mathematical models of cellular electrophysiology, using technology based on a CellML- or Systems Biology Markup Language (SBML)-encoded implementation of the mathematical models. Here, we review the current state of the art and what needs to be done before such a model publication becomes commonplace.


2018 ◽  
Author(s):  
Juan Cruz Landoni ◽  
Liya Wang ◽  
Anu Suomalainen

Deoxyribonucleoside triphosphates (dNTPs) are the reduced nucleotides used as the building blocks and energy source for DNA replication and maintenance in all living systems. They are present in highly regulated amounts and ratios in the cell, and their balance has been implicated in the most important cell processes, from determining the fidelity of DNA replication to affecting cell fate. Furthermore, many cancer drugs target biosynthetic enzymes in dNTP metabolism, and mutations in genes directly or indirectly affecting these pathways are the cause of devastating diseases. The accurate and systematic measurement of these pools is key to understand the mechanisms behind these diseases and their treatment. We present a new method for measuring dNTP pools from biological samples, utilising the current state-of-the-art polymerase method, modified to a solid-phase setting and optimised for larger scale measurements.


1995 ◽  
Vol 2 (4) ◽  
pp. 211-222 ◽  
Author(s):  
Tee L Guidotti

There is a fundamental reevaluation of the association between air quality and human health taking place. This reevaluation is motivated by several recent developments: increasing interest in air quality as an environmental issue; interest in the unanswered questions regarding the epidemiology of asthma; and the reduced prevalence of the principal hazard to respiratory health, cigarette smoking, the control of which invites interest in second-order determinants of health. This article attempts to provide a framework for understanding air quality issues that pertain to human health. The objective is to provide the specialist in respiratory medicine with an overview that will assist in educating patients and in responding to their inquiries, and to equip the physician to respond to requests for assistance or interpretation when called upon to comment on public policy issues involving air pollution. The implications of setting air quality standards or objectives to meet arbitrary levels of risk of health effects are examined. The current state of the art does not support risk-based air quality standards. A policy of continuous improvement is most protective of both human health and the environment.


Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 807
Author(s):  
Nicolae Goga ◽  
Leonhard Mayrhofer ◽  
Ionut Tranca ◽  
Silvia Nedea ◽  
Koen Heijmans ◽  
...  

In this review, we provide a short overview of the Molecular Dynamics (MD) method and how it can be used to model the water splitting process in photoelectrochemical hydrogen production. We cover classical non-reactive and reactive MD techniques as well as multiscale extensions combining classical MD with quantum chemical and continuum methods. Selected examples of MD investigations of various aqueous semiconductor interfaces with a special focus on TiO2 are discussed. Finally, we identify gaps in the current state-of-the-art where further developments will be needed for better utilization of MD techniques in the field of water splitting.


Author(s):  
Igor Karlovits ◽  

The concept of efficient utilisation of renewable bio-based materials (biomass feedstock) is the driving force in the green transformation to a more sustainable and circular society. Biorefineries or biochemical platforms convert and utilise different sources of biomass into fuels and other beneficial derivates like fibres and other bio-based chemicals. These can be used as building blocks for many potentially useful applications. In this review, we shall describe the current state of the art and trends in the conversion of lignocellulosic feedstock into materials which can be primarily used in packaging applications. The three main constituents (cellulose, hemicellulose and lignin) are being re-engineered into new products with higher added value. The main goal of all these downstream products is that they do not compete with animal feed and food applications. The main downstream products of different kind of transformations are different natural fibres which can be further processed into micro or nano fibrillated state and used for a broad application of fields from ink, adhesive and packaging materials. Also, fibres and its derivates can be bonded successfully into bio-composites or fibre-based foams applications for the protective packaging applications. Hemicellulose, as a second most abundant component, has been researched for applications in adhesives and paper and paperboard coatings. Lignin which is currently utilised as an energy source for the paper industry, has been recently actively researched. Lignin-based biopolymers have a potential to be used in many different applications from additives in the barrier coatings on the packaging to active packaging and even as lignin-based foams. All these applications are currently in the development stages and cover niche market segments, but are expected to grow and to be used in future markets.


Author(s):  
Ramjee Prasad ◽  
Purva Choudhary

Artificial Intelligence (AI) as a technology has existed for less than a century. In spite of this, it has managed to achieve great strides. The rapid progress made in this field has aroused the curiosity of many technologists around the globe and many companies across various domains are curious to explore its potential. For a field that has achieved so much in such a short duration, it is imperative that people who aim to work in Artificial Intelligence, study its origins, recent developments, and future possibilities of expansion to gain a better insight into the field. This paper encapsulates the notable progress made in Artificial Intelligence starting from its conceptualization to its current state and future possibilities, in various fields. It covers concepts like a Turing machine, Turing test, historical developments in Artificial Intelligence, expert systems, big data, robotics, current developments in Artificial Intelligence across various fields, and future possibilities of exploration.


2014 ◽  
Vol 6 (22) ◽  
pp. 8858-8873 ◽  
Author(s):  
Susana Liébana ◽  
Delfina Brandão ◽  
Salvador Alegret ◽  
María Isabel Pividori

This review discusses the current state of the artSalmonelladetection methods. In this perspective, emphasis is given to the recent developments in biosensors, in particular electrochemical immunosensors, genosensors and phagosensors.


Sign in / Sign up

Export Citation Format

Share Document