A Novel Eco-Friendly Scale and Corrosion Inhibitor Modified by β-Cyclodextrin

2017 ◽  
Vol 70 (8) ◽  
pp. 933 ◽  
Author(s):  
Mingjin Tang ◽  
Jianbo Li ◽  
Zhengrong Ye ◽  
Zimin Kou ◽  
Luoping Fu

A polymer, β-MEA, was synthesised from β-cyclodextrin (β-CD), 3-chloro-2-methylpropene (MAC), epoxysuccinic acid (ESA), and 2-acrylamido-2-methyl propane sulfonic acid (AMPS) with a (NH4)2S2O8-NaHSO3 redox initiator system by aqueous solution radical polymerisation. β-MEA was characterised by means of IR spectroscopy, time-of-flight mass spectrometry, gel permeation chromatography, and thermogravimetric analysis. Its structure, molecular weight, thermal stability, scale and corrosion inhibition performance and mechanism were investigated. The results verified that β-MEA achieves a better scale inhibition efficiency for BaSO4 compared with poly(aspartic acid) (PASP) (100 % cf. 94.9 % at a concentration of 20 mg L−1) and a better corrosion inhibition efficiency of N80 carbon steel in saline water compared with PESA (91.2 % cf. 79.7 % at a concentration of 1 g L−1). The BaSO4 was characterised by scanning electron microscopy (SEM) and X-ray diffraction to investigate the crystal morphology of the scale. Primary research on the mechanism for corrosion inhibition was carried by SEM-chemical analysis.

2012 ◽  
Vol 535-537 ◽  
pp. 1180-1184
Author(s):  
Mao Dong Li ◽  
Bin Zeng ◽  
Lin Yang ◽  
Jun Ming Zhao ◽  
Yu Hui Du ◽  
...  

The static scale inhibition method will be used to evaluate the scale inhibition performance of HEDP. In order to study the corrosion inhibition of 20A steel with additive of HEDP in the industrial boiler water medium,the total iron ions in the solution are determined through autoclave static experiments. The results indicated that the scale inhibition efficiency,in the simulation boiler water with a certain concentration ratio and temperature,reached the maximum when CHEDP is 7 mg/L. It has a good corrosion inhibition effect on the 20A steel when the HEDP concentration exceeds 15ppm.


2015 ◽  
Vol 814 ◽  
pp. 278-285
Author(s):  
Ming Zhu ◽  
Cheng Qiang Ren ◽  
Yuan Yuan Meng ◽  
Li Liu ◽  
Yun Ping Zheng

The deposition of BaSO4scale is always found in the oilfield. It is difficult to be removed. Therefore, it plays a negative role to the production. The effects of temperature and water chemistry on BaSO4scale have been investigated by using the conductivity method in this work. An environment-friendly copolymer was prepared to control the scaling of BaSO4. The copolymer was proved by static scale inhibition method, and weight-loss test that it has excellent scale inhibition performance and corrosion inhibition efficiency. Furthermore, FTIR spectra was used to prove that the scale inhibitor was polyepoxysuccinic acid (PESA).


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Wei Yu ◽  
Hu Yang

AbstractTwo series of cellulose-based antiscalants with different chain architectures, i.e., linear carboxymethyl cellulose (CMC) and branch-shaped carboxymethyl cellulose-graft-poly(acrylic acid) (CMC-g-PAA), were synthesized. The carboxyl groups were distributed on CMC backbone but mainly on the grafted chains of CMC-g-PAA. The addition of CMC and CMC-g-PAA can both increase the surface energy of CaCO3 scale and decrease its crystal nucleation rate, thereby inhibiting CaCO3 scale formation. The structural effects of these cellulose-based antiscalants, especially the chain architectures, on the scale inhibition were investigated in detail. High degree of carboxymethyl substitution caused better inhibition effect of linear CMC. However, CMC-g-PAA with an appropriate content of carboxyl groups but high average number of PAA grafted chains can achieve high inhibition performance. Besides, with similar contents of carboxyl groups, CMC-g-PAA showed much better inhibition performance than CMC due to the distinct multi-dimensional spatial structure of graft copolymer in solution, causing the enhanced chelation and dispersion effects. Characterization of CaCO3 crystal by scanning electron microscopy and X-ray diffraction confirmed that crystal distortion effect obviously existed in CMC but quite minor in CMC-g-PAA. The differences between the scale-inhibition performance of CMC and CMC-g-PAA should be attributed to the different scale-inhibition mechanisms originated in their distinct chain architectures.


Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1642
Author(s):  
Mingxing Liu ◽  
Dayu Xia ◽  
Ambrish Singh ◽  
Yuanhua Lin

This paper studies the corrosion inhibition performance and mechanism of dextrin (Dxt) and its graft copolymer with caprolactam (Dxt-g-CPL) on J55 steel in 1 M HCl solution. Caprolactam is grafted and copolymerized with dextrin by a chemical synthesis method, to obtain a dextrin graft copolymer corrosion inhibitor. The composition of the synthesized graft copolymer was characterized by FTIR to identify whether the grafting was successful. Through weightlessness, electrochemical impedance spectroscopy (EIS), potentiodynamic polarization curve (TAFEL), scanning electrochemical microscope (SECM), scanning electron microscope (SEM), and contact angle experiments, the graft copolymer to J55 steel in 1 M HCl solution and the corrosion inhibition performance were evaluated. Moreover, we discuss its corrosion inhibition mechanism. The dextrin graft copolymer has good corrosion inhibition performance for J55 in 1 M HCl solution. When the concentration of the corrosion inhibitor increases, the corrosion inhibition efficiency will also increase. At a certain concentration, when the temperature rises, the corrosion inhibition efficiency will gradually decrease. When the concentration is 300 mg/L, it has a better corrosion inhibition effect, and the corrosion inhibition efficiency is 82.38%. Potential polarization studies have shown that Dxt-g-CPL is a mixed corrosion inhibitor, which inhibits both the cathode and the anode of the electrode reaction. SEM, SECM, and contact angle analysis results show that Dxt-g-CPL can significantly inhibit corrosion. Compared with Dxt, Dxt-g-CPL has a better inhibitory effect.


2017 ◽  
Vol 4 (1) ◽  
pp. 59-64
Author(s):  
Gunavathy N ◽  
Sangeetha M

The present study was undertaken to find out the phytochemicals present in Bougainvillea glabra bracts extract and to compare the corrosion inhibition efficiency between B.glabra Pink, Orange and White coloured bract extract on mild steel in 1N HCl. Phyto chemical analysis showed the presence of alkaloids, flavonoids, phenolic compounds and tannins in the extract as confirmed by implying different qualitative tests specified for these phytochemical. Corrosion rate, inhibition efficiency, FTIR analysis was determined. The corrosion of mild steel in 1N HCl acid media was significantly reduced upon the additions of BG bract extracts. The inhibition efficiency increased with the increasing concentration of the inhibitor. Maximum inhibition efficiency was observed at an optimum concentration of 2 % v/v.


2018 ◽  
Vol 18 (12) ◽  
pp. 8327-8332
Author(s):  
Feng Wang ◽  
Hong-Hua Ge ◽  
Kai Wu ◽  
Jun-Yi Sha ◽  
Le-Tian Wang ◽  
...  

The influence of Al2O3 nanoparticles on corrosion inhibition of benzotriazole (BTA) in brass/ simulated water system was studied by potentiodynamic polarization curve and electrochemical impedance spectroscopy (EIS). The results show that BTA has good corrosion inhibition effect on brass. Al2O3 nanoparticles could reduce the corrosion inhibition performance of BTA. The higher the concentration of Al2O3 nanoparticles in simulated water, the lower corrosion inhibition performance of BTA. The isothermal adsorption of BTA on brass surface in simulated water and Al2O3 nanofluids was analyzed. The results indicated that the adsorption of BTA on brass surface followed the Langmuirs’ adsorption isotherm, the adsorption Gibbs free energy ΔG was less than −40 kJ/mol, corresponding to chemical adsorption, in both simulated water and Al2O3 nanofluids. The −ΔG value of BTA on brass surface decreased in Al2O3 nanofluids, indicating the weakening of the BTA adsorption on the brass surface. Surface analysis of brass samples by optical microscope and X-ray diffraction confirmed the above results.


2020 ◽  
Vol 4 (3) ◽  
pp. 154-161
Author(s):  
Anthony Victor Gambo

The effect of extract of Acacia Nolitica pod on the corrosion inhibition of LM 6 aluminium alloy in 1M NaOH was studied using weight loss, gasometric, and open circuit potential techniques. Corrosion rates were found to reduce in the presence of the inhibitor. The inhibition efficiency was found to increase with increase in the concentration of the inhibitor and decreased with increase in the temperature. Thermodynamic parameters showed that the adsorption of the inhibitor on the metal surface is a spontaneous process and that the adsorption was via a physisorption mechanism. The adsorption process fitted perfectly with the Langmuir adsorption isotherm indicating that the extract was strongly adsorbed on the aluminium alloy surface. Morphology of the surface was examined by scanning electron microscopy (SEM) in the absence and presence of 0.5%v/v of the used inhibitor which confirmed the existence of a protective film of inhibitor molecule on the metal surface.  


2013 ◽  
Vol 448-453 ◽  
pp. 3949-3953
Author(s):  
Shan Fa Tang ◽  
Hui Liao ◽  
Lei Tian ◽  
Xiao Jie Wang ◽  
Xiao Yang Lei ◽  
...  

The binary polymer AA/SAS was synthesized by acrylic acid (AA) and sodium allylsulfonate (SAS), named as AS and its structure was characterized. Its scale inhibition performance was also investigated for single CaCO3, CaSO4 scales, and composite scales in simulated formation water containing Ca2+, Mg2+, Ba2+ and Sr2+. The results indicate that when adding 50mg/L of the inhibitor, it is 85.05% efficient for CaCO3 inhibition and 98.85% for CaSO4, but only 49.05% and 51.58% for BaSO4 and SrSO4 separately. The scale inhibition performance is obvious in the simulated formation water with high concentration of calcium (1300mg/L) and low barium ion (100mg/L ), the inhibition efficiency are both above 85% at a dosage of 80mg/L. And it can fairly satisfy the demand of inhibiting composite scales (CaCO3 scale, CaSO4 scale, BaSO4 scale and SrSO4 scale), when AS and CT was combined at a mass ratio of 2:1 in high calcium , barium and strontium ions contained formation water, being 95.3% efficient at the dosage of 100mg/L.


2020 ◽  
Vol 15 (2) ◽  
pp. 202-209 ◽  
Author(s):  
Ahmed Al-Amiery ◽  
Taghried A Salman ◽  
Khalida F Alazawi ◽  
Lina M Shaker ◽  
Abdul Amir H Kadhum ◽  
...  

Abstract The corrosion inhibition of Schiff base, namely 2-((2-hydroxy-5-methoxybenzylidene)amino)pyridine (HMAP), for mild steel (MS) in a 1 M hydrochloric acid environment was investigated by means of weight loss and scanning electron microscopy techniques. Quantum chemical calculation based on density functional theory (DFT) was carried out on HMAP. Results illustrated that HMAP is a superior inhibitor for the corrosion of MS in 1.0M hydrochloric acid environment, and inhibition efficiency is higher than 90.0% at 0.5 g/L HMAP. Inhibition performance increases with regard to concentration increase and inhibition performance decreases when raising temperature. Adsorption of the inhibitor on the MS surface followed Langmuir adsorption isotherm and the value of the free energy of adsorption; ΔGads indicated that the adsorption of HMAP was a physisorption/chemisorption process. The DFT refers to perfect correlation with methodological inhibition performance.


Sign in / Sign up

Export Citation Format

Share Document