Research on Corrosion and Scale Inhibition Performance of HEDP

2012 ◽  
Vol 535-537 ◽  
pp. 1180-1184
Author(s):  
Mao Dong Li ◽  
Bin Zeng ◽  
Lin Yang ◽  
Jun Ming Zhao ◽  
Yu Hui Du ◽  
...  

The static scale inhibition method will be used to evaluate the scale inhibition performance of HEDP. In order to study the corrosion inhibition of 20A steel with additive of HEDP in the industrial boiler water medium,the total iron ions in the solution are determined through autoclave static experiments. The results indicated that the scale inhibition efficiency,in the simulation boiler water with a certain concentration ratio and temperature,reached the maximum when CHEDP is 7 mg/L. It has a good corrosion inhibition effect on the 20A steel when the HEDP concentration exceeds 15ppm.

2013 ◽  
Vol 67 (7) ◽  
pp. 1544-1550 ◽  
Author(s):  
Bin Zeng ◽  
Mao-dong Li ◽  
Zhi-ping Zhu ◽  
Jun-ming Zhao ◽  
Hui Zhang

The primary method used for boiler water treatment is the addition of chemicals to industrial boilers to prevent corrosion and scaling. The static scale inhibition method was used to evaluate the scale inhibition performance of 1-hydroxyethylidene-1, 1-diphosphonic acid (HEDP). Autoclave static experiments were used to study the corrosion inhibition properties of the main material for industrial boilers (20# carbon steel) with an HEDP additive in the industrial boiler water medium. The electrochemical behavior of HEDP on carbon steel corrosion control was investigated using electrochemical impedance spectroscopy and Tafel polarization techniques. Experimental results indicate that HEDP can have a good scale inhibition effect when added at a quantity of 5 to 7 mg/L at a test temperature of not more than 100 °C. To achieve a high scale inhibition rate, the HEDP dosage must be increased when the test temperature exceeds 100 °C. Electrochemical and autoclave static experimental results suggest that HEDP has a good corrosion inhibition effect on 20# carbon steel at a concentration of 25 mg/L. HEDP is an excellent water treatment agent.


2013 ◽  
Vol 328 ◽  
pp. 877-881
Author(s):  
Mao Dong Li ◽  
Bin Zeng ◽  
Yu Hui Du ◽  
Juan Liu ◽  
Jun Ming Zhao ◽  
...  

The maximum allowable content of chloride ion in industrial boiler water is closely related to the concentration ratio and operating conditions, the reasons for industrial boiler can not be operated under too high concentration ratio is due to the limit of Cl- content. There are many studies for the electrochemical corrosion behavior of carbon steel caused only by chloride ion, but few studies for calcium and bicarbonate ions on the electrochemical corrosion behavior of carbon steel. In order to study the corrosion of water-wall tubes for industrial boilers (20# carbon steel) caused by chloride ion, the erosive anion (Cl) and Ca2+, electrochemical impedance spectroscopy and Tafel polarization techniques were performed. Autoclave static experiments were performed to study the corrosion inhibition property of carbon steel with 1-hydroxyethylidene-1, 1-diphosphonic acid (HEDP) additive in industrial boiler water medium. The results showed that Cl- could promote the corrosion of carbon steel obviously, HEDP has a good corrosion inhibition effect on 20# carbon steel at a concentration of 25 mg/L; Lower concentration Ca2+ in industrial boiler water could promote the corrosion while addition of higher concentration Ca2+ could inhibit the corrosion. It can provide a reference for the safe operation of the industrial boiler.


2017 ◽  
Vol 70 (8) ◽  
pp. 933 ◽  
Author(s):  
Mingjin Tang ◽  
Jianbo Li ◽  
Zhengrong Ye ◽  
Zimin Kou ◽  
Luoping Fu

A polymer, β-MEA, was synthesised from β-cyclodextrin (β-CD), 3-chloro-2-methylpropene (MAC), epoxysuccinic acid (ESA), and 2-acrylamido-2-methyl propane sulfonic acid (AMPS) with a (NH4)2S2O8-NaHSO3 redox initiator system by aqueous solution radical polymerisation. β-MEA was characterised by means of IR spectroscopy, time-of-flight mass spectrometry, gel permeation chromatography, and thermogravimetric analysis. Its structure, molecular weight, thermal stability, scale and corrosion inhibition performance and mechanism were investigated. The results verified that β-MEA achieves a better scale inhibition efficiency for BaSO4 compared with poly(aspartic acid) (PASP) (100 % cf. 94.9 % at a concentration of 20 mg L−1) and a better corrosion inhibition efficiency of N80 carbon steel in saline water compared with PESA (91.2 % cf. 79.7 % at a concentration of 1 g L−1). The BaSO4 was characterised by scanning electron microscopy (SEM) and X-ray diffraction to investigate the crystal morphology of the scale. Primary research on the mechanism for corrosion inhibition was carried by SEM-chemical analysis.


Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 275
Author(s):  
Kun Sheng ◽  
Honghua Ge ◽  
Xin Huang ◽  
Yi Zhang ◽  
Yanfang Song ◽  
...  

The formation of CaCO3 crystals on the cathode surface and the scale-inhibition performance of scale inhibitor 2-phosphonobutane-1,2,4-tricarboxylic acid (PBTCA) on the cathode surface were studied by methods of solution analysis, gravimetric analysis, SEM, FTIR, and XRD techniques. They were then compared with the results of the formation and suppression of CaCO3 crystals in aqueous solution. PBTCA had a good solution-scale-inhibition performance and good lattice-distortion effects on CaCO3 crystals in solution, which could change the CaCO3 from calcite to vaterite and aragonite crystals. The solution-scale-inhibition efficiency exceeded 97% when the PBTCA concentration reached 8 mg/L. Under cathodic polarization conditions, the surface-scale-inhibition efficiency of the cathode and solution-scale-inhibition efficiency near the cathode surface both exceed 97% at polarization potential of −1V. The addition of PBTCA significantly reduced the amount of CaCO3 crystals formed on the cathode surface and had good surface and solution-scale-inhibition effect. However, the lattice-distortion effect of PBTCA on CaCO3 crystals disappeared on the cathode surface, and the resulting CaCO3 contained only calcite crystals. The high-scale-inhibition effect of PBTCA under cathodic polarization was mainly due to the inhibition of the formation of calcium carbonate crystals by PBTCA, and not because of the lattice distortion of CaCO3 crystals.


2014 ◽  
Vol 496-500 ◽  
pp. 47-50
Author(s):  
Xue Dan Chen ◽  
Min Gong ◽  
Qing Shan Fu ◽  
Xing Wen Zheng ◽  
Xue Song Feng

The corrosion inhibition effect of the 1-alkyl-3-methylimidazolium proline ([Omi [Pro]) for copper in 3.5% NaCl solution was investigated by using electrochemical methods. The results indicated that: the inhibition efficiency of [Omi [Pro] was more than 90%, which showed the excellent corrosion inhibition performance. The inhibition efficiency increased with increasing concentration of [Omi [Pro], and decreased with increasing temperature, but it changed very little when the concentration arrived at 0.001 mol/L. [Omi [Pro] was a good mixed-type inhibitor which mainly inhibited anodic processes.


2015 ◽  
Vol 814 ◽  
pp. 278-285
Author(s):  
Ming Zhu ◽  
Cheng Qiang Ren ◽  
Yuan Yuan Meng ◽  
Li Liu ◽  
Yun Ping Zheng

The deposition of BaSO4scale is always found in the oilfield. It is difficult to be removed. Therefore, it plays a negative role to the production. The effects of temperature and water chemistry on BaSO4scale have been investigated by using the conductivity method in this work. An environment-friendly copolymer was prepared to control the scaling of BaSO4. The copolymer was proved by static scale inhibition method, and weight-loss test that it has excellent scale inhibition performance and corrosion inhibition efficiency. Furthermore, FTIR spectra was used to prove that the scale inhibitor was polyepoxysuccinic acid (PESA).


2019 ◽  
Vol 814 ◽  
pp. 499-504
Author(s):  
Ren Jun Xu ◽  
Hua Lei He ◽  
Ying Li Tang ◽  
Min Lan Gao ◽  
Hai Peng Hui ◽  
...  

Ligustrum vulgare is an evergreen tree. The leaves are opposite, glossy dark green, 6–17 centimetres (2.4–6.7 in) long and 3–8 centimetres (1.2–3.1 in) broad. The ligustrum vulgare leaves contain two main components, one of which is oleanolic acid and the other is p-hydroxyphenylethanol which indicates its extracts suitable to be used as an effective corrosion inhibitor. Extracts of ligustrum vulgare leaves (PE) were modified with hydroxymethylation reaction (PM1) and Mannich reaction (PM2) to produce the relative stable green acidic corrosion inhibitors. The extracts of ligustrum vulgare leaves have been investigated on the corrosion inhibition of A3 steel with weight loss. The results show that these inhibitors have good corrosion inhibition effect on A3 steel. The PM2 are the most effective for corrosion inhibition, and the inhibition efficiency can reach 75.95%. When the temperature is 60°C, the corrosion inhibition rate of PE, PM1, PM2 is only 24.46%, 42.35% and 39.35% respectively which can not effectively prevent the corrosion of the metal. And the extracts inhibit corrosion mainly by adsorption mechanism. This adsorption accords with Langmuir adsorption isotherm.


2011 ◽  
Vol 347-353 ◽  
pp. 542-546
Author(s):  
Qun Jie Xu ◽  
Xian Qin Deng ◽  
Wen Li

The corrosion inhibition of brass in simulated cooling water by complex of triethanolamine (TEA) and Na2WO4 had been investigated by means of electrochemical (AC impedance and dc polarization) techniques. The results indicated that both TEA and Na2WO4 were able to inhibit the corrosion of brass in simulated cooling water. TEA showed the best inhibition effect for brass corrosion at the TEA concentration of 30 mg/L, and the inhibition efficiency was 45.35%. At the total inhibitor concentration of 20 mg/L, the complex of TEA and Na2WO4 had a good synergistic effect, and the optimum ratio of TEA to Na2WO4 is 1:9, corrosion inhibition efficiency was 89.08%.


Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1642
Author(s):  
Mingxing Liu ◽  
Dayu Xia ◽  
Ambrish Singh ◽  
Yuanhua Lin

This paper studies the corrosion inhibition performance and mechanism of dextrin (Dxt) and its graft copolymer with caprolactam (Dxt-g-CPL) on J55 steel in 1 M HCl solution. Caprolactam is grafted and copolymerized with dextrin by a chemical synthesis method, to obtain a dextrin graft copolymer corrosion inhibitor. The composition of the synthesized graft copolymer was characterized by FTIR to identify whether the grafting was successful. Through weightlessness, electrochemical impedance spectroscopy (EIS), potentiodynamic polarization curve (TAFEL), scanning electrochemical microscope (SECM), scanning electron microscope (SEM), and contact angle experiments, the graft copolymer to J55 steel in 1 M HCl solution and the corrosion inhibition performance were evaluated. Moreover, we discuss its corrosion inhibition mechanism. The dextrin graft copolymer has good corrosion inhibition performance for J55 in 1 M HCl solution. When the concentration of the corrosion inhibitor increases, the corrosion inhibition efficiency will also increase. At a certain concentration, when the temperature rises, the corrosion inhibition efficiency will gradually decrease. When the concentration is 300 mg/L, it has a better corrosion inhibition effect, and the corrosion inhibition efficiency is 82.38%. Potential polarization studies have shown that Dxt-g-CPL is a mixed corrosion inhibitor, which inhibits both the cathode and the anode of the electrode reaction. SEM, SECM, and contact angle analysis results show that Dxt-g-CPL can significantly inhibit corrosion. Compared with Dxt, Dxt-g-CPL has a better inhibitory effect.


Sign in / Sign up

Export Citation Format

Share Document