scholarly journals Hydrogels Containing the Ferri/Ferrocyanide Redox Couple and Ionic Liquids for Thermocells

2019 ◽  
Vol 72 (2) ◽  
pp. 112 ◽  
Author(s):  
Matthew Russo ◽  
Holly Warren ◽  
Geoffrey M. Spinks ◽  
Douglas R. MacFarlane ◽  
Jennifer M. Pringle

Thermoelectrochemical cells are a promising new technology for harvesting low-grade waste heat. The operation of these cells relies on a redox couple within an electrolyte, which is most commonly water-based, and improvement of these materials is a key aspect of the advancement of this technology. Here, we report the gelation of aqueous electrolytes containing the K3Fe(CN)6/K4Fe(CN)6 redox couple using a range of different polymers, including polyvinyl alcohol (PVA), sodium carboxymethyl cellulose (Cmc), polyacrylamide (PAAm), and two commercial polyurethane-based polymers: HydroMed D640 and HydroSlip C. These polymers produce quasi-solid-state electrolytes with sufficient mechanical properties to prevent leakage, and allow improved device flexibility and safety. Furthermore, the incorporation of various ionic liquids within the optimized hydrogel network is investigated as a route to enhance the electrochemical and mechanical properties and thermal energy harvesting performance of the hydrogels.

2018 ◽  
Vol 2 (8) ◽  
pp. 1806-1812 ◽  
Author(s):  
Abuzar Taheri ◽  
Douglas R. MacFarlane ◽  
Cristina Pozo-Gonzalo ◽  
Jennifer M. Pringle

Towards the development of stable thermocells for harvesting low-grade waste heat, non-volatile and flexible electrolyte films are reported.


ChemSusChem ◽  
2018 ◽  
Vol 11 (16) ◽  
pp. 2788-2796 ◽  
Author(s):  
Abuzar Taheri ◽  
Douglas R. MacFarlane ◽  
Cristina Pozo‐Gonzalo ◽  
Jennifer M. Pringle

Author(s):  
Zhonglin Bu ◽  
Xinyue Zhang ◽  
Yixin Hu ◽  
Zhiwei Chen ◽  
Siqi Lin ◽  
...  

Thermoelectric technology offers unique advantages of all solid-state, silent and emission-free for waste-heat recovery applications. Yet existing thermoelectric modules, in particular for recovering low-grade but abundant heat of <600 K,...


Author(s):  
Sawako Nakamae

Thermoelectric (TE) materials that are capable of converting heat into electricity have been considered as one possible solution to recover the low-grade waste-heat (from industrial waste-stream, motor engines, household electronic appliances or body-heat). Solid semiconductor-based TE-modules were the first to enter the commercial application, and they still dominate the TE-market today. Despite their technical robustness including long life-time, simple use involving no moving parts, TE-technology has long been limited to low-power applications due to their poor efficiency. Closely following the rise of ‘nanotechnology’ in the 1980’s - 90’s, there has been a huge increase in the TE materials research in the past 20 years, which has led to some remarkable improvements in thermal-to-electric energy conversion capacity. However, even the most “promising” materials have not yet reached the minimum ZT requirements. Furthermore, solid TE-materials suffer from a variety of practical obstacles such as small sizes, substantial production costs and the use of scarce and/or toxic raw materials, precluding them from wide-scale applications. Clearly, a technological breakthrough in TE-materials research is needed in order to make the thermoelectric technology environmentally friendly and economically viable for its future use. MAGENTA is a 4-year research & innovation project that aims at bringing a paradigm change in TE-technology by exploiting the magneto-thermoelectric (MTE) property of ionic-liquid (IL) based ferrofluids (FF), i.e., colloidal dispersions consisting of magnetic nanoparticles (MNPs) in non-magnetic ionic liquids. Magnetic nanoparticles are, as the name suggests, a class of nanoparticles (less than 1 mm in diameter) made of magnetic elements such as iron and nickel and their alloys and chemical compounds. They are used in a plethora of technological fields from biomedicine to data storage. However, their use in energy applications remains quite limited so far. Ionic liquids (IL), on the other hand, are enjoying substantial attention in several areas of energy research including thermoelectricity in recent decades. As a thermoelectric material, ILs present many promising features such as high electrical conductivity, large temperature and electrochemical windows, low vapour pressure and toxicity, and raw material abundance. In this presentation, I will discuss MAGENTA’s scientific motivations (how to produce thermoelectric voltage and current using IL based ferrofluids), the methodologies to be used and the project objectives; i.e., 1) to provide founding knowledge of novel MTE phenomena in IL based ferrofluids, and 2) to build application-specific MTE prototypes with tailor-made IL-FFs for their use in targeted industrial sectors (cars and portable electronics). Some encouraging preliminary results on liquid thermoelectric materials obtained by the project partners will also be presented.


2016 ◽  
Vol 190 ◽  
pp. 205-218 ◽  
Author(s):  
Jiangjing He ◽  
Danah Al-Masri ◽  
Douglas R. MacFarlane ◽  
Jennifer M. Pringle

Increasing the application of technologies for harvesting waste heat could make a significant contribution to sustainable energy production. Thermoelectrochemical cells are one such emerging technology, where the thermal response of a redox couple in an electrolyte is used to generate a potential difference across a cell when a temperature gradient exists. The unique physical properties of ionic liquids make them ideal for application as electrolytes in these devices. One of the keys to utilizing these media in efficient thermoelectrochemical cells is achieving high Seebeck coefficients, Se: the thermodynamic quantity that determines the magnitude of the voltage achieved per unit temperature difference. Here, we report the Se and cell performance of a cobalt-based redox couple in a range of different ionic liquids, to investigate the influence of the nature of the IL on the thermodynamics and cell performance of the redox system. The results reported include the highest Se to-date for an IL-based electrolyte. The effect of diluting the different ILs with propylene carbonate is also reported, which results in a significant increase in the output powers and current densities of the device.


1993 ◽  
Vol 27 (7-8) ◽  
pp. 547-556 ◽  
Author(s):  
M. Gaft

Exhaustion of rich ore deposits is making it necessary to bring low-grade ores into production, resulting in a sharply increased volume of excavated rock. Huge quantities of waste fill vast areas of the Earth's surface, with severe ecological effects. But the ecological damage could be reduced by extracting additional products from the tailings. Laseroluminescent sorting is a new technology by which this may be achieved. The most promising subjects are about 50 minerals including diamonds, native Au and Ag, ores of V, Pb, Zn, Sn, Li, Be, W, Mo, Zr, Sr, halite, apatite, phosphorite, fluorite, calcite, barite, anhydrite.


1992 ◽  
Vol 25 (12) ◽  
pp. 33-47 ◽  
Author(s):  
T. S. C. Gross ◽  
R. R. Cohen

The small island of Jersey is served by a single wastewater treatment plant at Bellozanne. Since its inception some 30 years ago the sludge produced has been used on agricultural land. Inevitably there are circumstances which prevent this happening without interruption, eg, poor weather, or seasonal demand. On these occasions, the island has no other disposal option to fall back on. Furthermore, concerns over the practice have created a perception that it might be doing harm to the ‘quality' of the farm produce. The responsible body, the Public Services Department, formulated a flexible, multiple option solution and commissioned Halcrow to engineer the capital works. The works centre around a thermal drying plant using biogas produced by the digestion process as the main fuel. Waste heat is recovered for digester heating making the total process potentially self sufficient in energy. At the same time, the bulk of the product is reduced considerably, providing an easily transported material with potential for use directly on the land as a fertilizer substitute or as a low grade fuel. Farfrom being a disposal problem requiring manpower and expense, sludge will soon be regarded by the States of Jersey as a valuable resource with a revenue potential.


2021 ◽  
Vol 9 (8) ◽  
pp. 4679-4686
Author(s):  
Coby J. Clarke ◽  
Richard P. Matthews ◽  
Alex P. S. Brogan ◽  
Jason P. Hallett

Gels prepared from metal containing ionic liquids with cross-linked poly(ethylene glycol) have surface compositions and mechanical properties that can be controlled by Lewis basicity and acidity of the metal species.


Sign in / Sign up

Export Citation Format

Share Document