Approaches to the preparation of 3'-deoxynucleosides

1968 ◽  
Vol 21 (2) ◽  
pp. 513 ◽  
Author(s):  
GAR Johnston

The stability of 3'-O-sulphonyl derivatives of uridine towards nucleophilic displacement indicates that sulphonate replacement is unlikely to offer a general route to 3'-deoxynucleosides. The preparation of 3'-deoxyuridine by direct iodination of 2',5'-di-O-trityluridine with triphenylphosphite methiodide followed by catalytic hydrogenolysis is discussed as such a general route dependent on the availability of suitably protected nucleoside starting materials. Acyl migration takes place under the conditions of the iodination reaction, limiting the choice of protecting groups.

1986 ◽  
Vol 51 (6) ◽  
pp. 1340-1351 ◽  
Author(s):  
Rudolf Kohn ◽  
Karol Tihlárik

The binding of calcium and lead ions to carboxy derivatives of starch prepared by allowing nitrogen dioxide to act on native maize starch (procedure A) and on starch 2,3-dialdehyde derivatives of degrees of oxidation DO(d.a.) ≥ 0.94 (procedure B) was studied. The carboxy group content of the samples in the H+ form was 4.6 - 12.1 mmol g-1. The effect of alkaline medium on the stability of the carboxy derivatives and on their ability to bind and exchange cations was examined. The Ca2+ → 2K+ exchange was evaluated in terms of the decrease in the electrostatic free enthalpy Δ(Gel/N)KCa, determined by alkalimetric potentiometric titrations, and the binding of Pb2+ ions was evaluated in terms of the activity of the Pb2+ counter-ions determined in suspensions of Pb salts of the carboxy derivatives by means of an ion specific electrode. The IR and CD spectra revealed that the carboxystarch preparations obtained by procedure A contained, in addition to free carboxy groups, a considerable amount of carbonyl groups. During the conversion of the latter groups to the former, even in a weakly alkaline medium, the carboxy derivatives undergo an appreciable degradation and lose, to a great extent, their ability to bind and exchange cations. Procedure B, on the other hand, leads to highly selective starch and amylose carboxy derivatives, exhibiting a small amount of carbonyl groups and featuring a relative stability towards alkaline medium; their binding capacity is as high as 12 milliequivalents of cations per g of sample.


2021 ◽  
Vol 8 (1) ◽  
pp. 9
Author(s):  
Laura Brelle ◽  
Estelle Renard ◽  
Valerie Langlois

A novel generation of gels based on medium chain length poly(3-hydroxyalkanoate)s, mcl-PHAs, were developed by using ionic interactions. First, water soluble mcl-PHAs containing sulfonate groups were obtained by thiol-ene reaction in the presence of sodium-3-mercapto-1-ethanesulfonate. Anionic PHAs were physically crosslinked by divalent inorganic cations Ca2+, Ba2+, Mg2+ or by ammonium derivatives of gallic acid GA-N(CH3)3+ or tannic acid TA-N(CH3)3+. The ammonium derivatives were designed through the chemical modification of gallic acid GA or tannic acid TA with glycidyl trimethyl ammonium chloride (GTMA). The results clearly demonstrated that the formation of the networks depends on the nature of the cations. A low viscoelastic network having an elastic around 40 Pa is formed in the presence of Ca2+. Although the gel formation is not possible in the presence of GA-N(CH3)3+, the mechanical properties increased in the presence of TA-N(CH3)3+ with an elastic modulus G’ around 4200 Pa. The PHOSO3−/TA-N(CH3)3+ gels having antioxidant activity, due to the presence of tannic acid, remained stable for at least 5 months. Thus, the stability of these novel networks based on PHA encourage their use in the development of active biomaterials.


2006 ◽  
Vol 84 (10) ◽  
pp. 1250-1253 ◽  
Author(s):  
Mee-Kyung Chung ◽  
Paul Fancy ◽  
Jeffrey M Stryker

The direct synthesis of sterically hindered, partially etherified derivatives of tetrakis(2-hydroxyphenyl)ethene is reported by using the McMurry reductive olefination reaction on a range of differentially substituted 2,2′-dialkoxy benzophenone substrates. Three orthogonal protection strategies are demonstrated, incorporating β-silylethyl, 3-butenyl, and tert-butyl protecting groups, respectively, into the starting benzophenones. The latter proved most efficient, with both the McMurry coupling and deprotection steps occurring concomitantly under the McMurry conditions to directly yield the desired bis(2-hydroxyphenyl)-bis(2-methoxyphenyl)ethene as a 1:1 mixture of E- and Z-diastereoisomers.Key words: preorganized polyaryloxide ligands, McMurry olefination, titanium trichloride, supramolecular chemistry, tetrakis(2-hydroxyphenyl)ethene, 2,2′-disubstituted benzophenone.


1995 ◽  
Vol 308 (1) ◽  
pp. 237-241 ◽  
Author(s):  
R Ramkumar ◽  
A Surolia ◽  
S K Podder

The thermodynamics of the binding of derivatives of galactose and lactose to a 14 kDa beta-galactoside-binding lectin (L-14) from sheep spleen has been studied in 10 nM phosphate/150 mM NaCl/10 mM beta-mercaptoethanol buffer, pH 7.4, and in the temperature range 285-300 K using titration calorimetry. The single-site binding constants of various sugars for the lectin were in the following order: N-acetyl-lactosamine thiodigalactoside > 4-methylumbelliferyl lactoside > lactose > 4-methylumbelliferyl alpha-D-galactoside > methyl-alpha-galactose > methyl-beta-galactose. Reactions were essentially enthalpically driven with the binding enthalpies ranging from -53.8 kJ/mol for thiodigalactoside at 301 K to -2.2 kJ/mol for galactose at 300 K, indicating that hydrogen-bonding and van der Waals interactions provide the major stabilization for these reactions. However, the binding of 4-methylumbelliferyl-alpha-D-galactose displays relatively favourable entropic contributions, indicating the existence of a non-polar site adjacent to the galactose-binding subsite. From the increments in the enthalpies for the binding of lactose, N-acetyl-lactosamine and thiodigalactoside relative to methyl-beta-galactose, the contribution of glucose binding in the subsite adjacent to that for galactose shows that glucose makes a major contribution to the stability of L-14 disaccharide complexes. Observation of enthalpy-entropy compensation for the recognition of saccharides such as lactose by L-14 and the absence of it for monosaccharides such as galactose, together with the lack of appreciable changes in the heat capacity (delta Cp), indicate that reorganization of water plays an important role in these reactions.


1977 ◽  
Vol 14 (02) ◽  
pp. 265-275
Author(s):  
Carl A. Scragg

This paper presents a new method of experimentally determining the stability derivatives of a ship. Using a linearized set of the equations of motion which allows for the presence of a memory effect, the response of the ship to impulsive motions is examined. This new technique is compared with the traditional method of regular-motion tests and experimental results are presented for both methods.


2020 ◽  
Vol 21 (22) ◽  
pp. 8834
Author(s):  
Natalia Drobnicka ◽  
Katarzyna Sutor ◽  
Agnieszka Kumorkiewicz-Jamro ◽  
Aneta Spórna-Kucab ◽  
Michał Antonik ◽  
...  

Herein, the generation of decarboxylated derivatives of gomphrenin pigments exhibiting potential health-promoting properties and the kinetics of their extraction during tea brewing from the purple flowers of Gomphrena globosa L. in aqueous and aqueous citric acid solutions were investigated. Time-dependent concentration monitoring of natural gomphrenins and their tentative identification was carried out by LC-DAD-ESI-MS/MS. The high content of acylated gomphrenins and their principal decarboxylation products, 2-, 15-, 17-decarboxy-gomphrenins, along with minor levels of their bidecarboxylated derivatives, were reported in the infusions. The identification was supported by the determination of molecular formulas of the extracted pigments by liquid chromatography coupled with high-resolution mass spectrometry (LCMS-IT-TOF). The influence of plant matrix on gomphrenins’ stability and generation of their derivatives, including the extraction kinetics, was determined by studying the concentration profiles in the primary and diluted infusions. Isolated and purified acylated gomphrenins from the same plant material were used for the preliminary determination of their decarboxylated derivatives. The acylated gomphrenins were found to be more stable than nonacylated ones. Citric acid addition had a degradative influence on natural gomphrenins mainly during the longer tea brewing process (above 15 min); however, the presence of plant matrix significantly increased the stability for betacyanins’ identification.


Synthesis ◽  
2019 ◽  
Vol 51 (05) ◽  
pp. 1273-1283 ◽  
Author(s):  
Simon Baldauf ◽  
Jeffrey Bode

The α-ketoacid–hydroxylamine (KAHA) ligation allows the coupling of unprotected peptide segments. The most widely used variant employs a 5-membered cyclic hydroxylamine that forms a homoserine ester as the primary ligation product. While very effective, monomers that give canonical amino acid residues are in high demand. In order to preserve the stability and reactivity of cyclic hydroxylamines, but form a canonical amino acid residue upon ligation, we sought to prepare cyclic derivatives of serine hydroxylamine. An evaluation of several cyclization strategies led to cyclobutanone ketals as the leading structures. The preparation, stability, and amide-forming ligation of these serine-derived ketals are described.


1982 ◽  
Vol 35 (4) ◽  
pp. 795 ◽  
Author(s):  
W Cowden ◽  
NW Jacobsen

5-Ethyl-1,3-dihydroxy-5-phenylbarbituric acid (N,N'-dihydroxyphenobarbital) and 5,5-diethyl-1,3-dihydroxybarbituric acid (N,N'-dihydroxyveronal) have been prepared by the condensation of 1,3-dibenzyloxyurea with ethylphenylmalonyl dichloride and diethylmalonyl dichloride respectively, followed by the removal of the benzyl protecting groups from the intermediate dibenzyloxy derivatives.


Sign in / Sign up

Export Citation Format

Share Document