scholarly journals Genetic diversity in Ethiopian Durum Wheat (Triticum turgidum var durum) inferred from phenotypic variations

2016 ◽  
Vol 16 (1) ◽  
pp. 39-49 ◽  
Author(s):  
Dejene K. Mengistu ◽  
Yosef G. Kidane ◽  
Carlo Fadda ◽  
Mario Enrico Pè

AbstractThe valorization of genetic diversities of major crops like wheat may help substantially to feed the world Population. Durum wheat genotypes consisting of 265 farmers’ varieties (FVs), which have been cultivated for many centuries in Ethiopia, as well as 24 improved varieties (IMVs) have been recently evaluated in northern Ethiopia. The evaluation has been carried out at two different locations for 2 consecutive years to verify the inherited diversity in FVs for important phenological and agronomic traits; with the intention to provide refined information to breeders and genebank managers. As a result of a careful evaluation, a very significant variation was observed between the FVs and IMVs. A large number of the former have demonstrated superior performance to the latter in terms of mean values of the major traits within the stipulated years and locations. The best performing FV has shown a gain of 20% grain yield over the best IMV. Multivariate analyses revealed that FVs displayed larger genetic diversity than in those IMVs. FVs could therefore be used as donor of useful alleles in durum wheat breeding for improvement of yield per se and other traits of agronomic and phenological importance. The identified stable superior FVs include: 8208, 226834A, 238567, 222426, 226282 could be best candidates for farmers in marginal environments. Genotypes that have shown stable performance for spatial variation such as 204493A, 214357 and 238567; and temporal variation such as 8208, 208479, 214357 and 226834A could be the best candidates for exploitation in future breeding programs.

2013 ◽  
Vol 64 (10) ◽  
pp. 957 ◽  
Author(s):  
S. Dura ◽  
M. Duwayri ◽  
M. Nachit ◽  
F. Al Sheyab

Durum wheat is one of the most important staple food crops, grown mainly in the Mediterranean region where its productivity is drastically affected by salinity. The objective of this study was to identify markers associated with grain yield and its related traits under saline conditions. A population of 114 F8 recombinant inbred lines (RILs) was derived by single-seed descent from a cross between Belikh2 (salinity-tolerant variety) and Omrabi5 (less salinity tolerant) was grown under non-saline and saline conditions in a glasshouse. Phenotypic data of the RILs and parental lines were measured for 15 agronomic traits. Association of 96 simple sequence repeat (SSR) loci covering all 14 chromosomes with 15 agronomic traits was analysed with a mixed linear model. In total, 49 SSR loci were significantly associated with these traits. Under saline conditions, 12 markers were associated with phenological traits and 19 markers were associated with yield and yield components. Marker alleles from Belikh2 were associated with a positive effect for the majority of markers associated with yield and yield components. Under saline condition, five markers (Xwmc182, Xwmc388, Xwmc398, Xbarc61, and Xwmc177) were closely linked with grain yield, located on chromosomes 2A, 3A, 3B, 4B, 5A, 6B, and 7A. These markers could be used for marker-assisted selection in durum wheat breeding under saline conditions.


2021 ◽  
Vol 74 (3) ◽  
pp. 9631-9642
Author(s):  
Zahira Laala ◽  
Abdelmalek Oulmi ◽  
Zine El Abidine Fellahi ◽  
Amar Benmahammed

This experiment was conducted at the Field Crops Institute, Agricultural Experimental Station of Setif (ITGC-AES), Eastern semi-arid areas of Algeria, during two successive cropping seasons, 2010/11 and 2011/12. The aim of the study was to evaluate the association of yield and yield-related traits and determine the direct and indirect effects of yield-related traits on grain yield. The plant materials consisted of 330 F3 and 174 F4 durum wheat lines along with their four parents and one control cultivar, which were evaluated under rainfed conditions in a semi-arid region. Data on nine agronomic traits were recorded. Sufficient genetic variability was observed among wheat traits as indicated by the minimum and maximum mean values and confirmed by the phenotypic and genotypic coefficients of variation that took intermediate and high estimates for most of the traits evaluated both in F3 and F4 generations. A high heritability (>60%) was observed for almost all the traits studied indicating the involvement of the additive action of genes in their genetic determinism. Results of stepwise regression and path analysis showed that biological yield, harvest index and number of spikes were the most determinant components of grain yield, exhibiting high positive direct effects (0.697, 0.683 and 0.293 in F3 vs 0.695, 0.205 and 0.560 in F4, respectively) coupled with positive and significant correlations (r=0.696*, r=0.778* and r=0.127* in F3 vs r=0.686*, r=0.628* and r=0.491* in F4, respectively) with this trait. These three yield-contributing traits can be considered as suitable indirect selection criteria to improve grain yield in the subsequent generation of the wheat breeding program.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Ali Mansouri ◽  
Bachir Oudjehih ◽  
Abdelkader Benbelkacem ◽  
Zine El Abidine Fellahi ◽  
Hamenna Bouzerzour

Relationships among agronomic traits and grain yield were investigated in 56 genotypes of durum wheat (Triticum durumDesf.). The results indicated the presence of sufficient variability nearly for all measured traits. Heritability and expected genetic gain varied among traits. Aboveground biomass, harvest index, and spike number were the most grain yield-influencing traits. Early genotypes showed above-average grain and biological yields, spike number, and lower canopy temperature. Assessed genotypes were clustered into three groups which differed mainly for biological, economical, straw, and grain yields, on the one hand, and plant height, chlorophyll content, and canopy temperature, on the other hand. Selection for direct use from clusters carrying best combinations of yield-related traits and crosses to be made between genotypes belonging to contrasted clusters were suggested to generate more variability. Selection preferentially for spike number, biological yield, harvest index, and canopy temperature to accumulate favorable alleles in the selected entries for future uses is suggested.


2011 ◽  
Vol 9 (3) ◽  
pp. 439-444 ◽  
Author(s):  
C. Rodríguez-Suárez ◽  
M. C. Ramírez ◽  
A. Martín ◽  
S. G. Atienza

Triticum urartu, the A-genome donor of tetraploid and hexaploid wheats, is a potential source of novel alleles for crop improvement. A fertile amphiploid between T. urartu (2n = 2x = 14; AuAu) and durum wheat cv ‘Yavaros’ (Triticum turgidum ssp. durum; 2n = 4x = 28, AABB) was obtained as a first step to making the genetic variability of the wild ancestor available to durum wheat breeding. The amphiploid was backcrossed with ‘Yavaros’ and the offspring from this cross was selfed. A plant from this progeny (founder line) with 28 chromosomes and active x and y subunits of the Glu-A1 locus of T. urartu was selfed, which resulted in the obtaining of 98 pre-introgression lines (pre-ILs). In this work, a set of 78 wheat chromosome-specific microsatellite markers (simple sequence repeats, SSR), uniformly distributed over the A genome, was used for marker-assisted selection of T. urartu in a durum wheat background. A total of 57 SSRs allowed a clear discrimination between T. urartu and ‘Yavaros’. This set of markers was further used for characterizing the pre-ILs, identifying and defining the T. urartu introgressed regions. The applicability of these markers is discussed.


2004 ◽  
Vol 84 (4) ◽  
pp. 1001-1013
Author(s):  
J. E. Dexter ◽  
M. A. Doust ◽  
C. N. Raciti ◽  
G. M. Lombardo ◽  
F. R. Clarke ◽  
...  

Since the 1980s, there have been general trends in the durum wheat milling industry to higher semolina extraction rate, and in the pasta processing industry to the use of higher drying temperatures. During this time, specification of gluten strength by gluten index, mixograph mixing properties and alveograph parameters has also become widespread. These trends prompted this study of the appropriateness of protocols for quality testing of Canadian durum wheat breeding lines. Four cultivars with intrinsic differences in yellow pigment levels and gluten strength were grown in field plots in Swift Current, Saskatchewan for three consecutive years. A laboratory-scale milling procedure was modified to produce semolina at extraction rates from about 65% to about 80%. Milling to extraction rates above 65%, the extraction rate used routinely in quality testing of Canadian durum wheat breeding lines, had a major impact on semolina ash content and colour, but did not offer any advantage in ranking cultivars for either semolina yield or semolina refinement. Gluten strength, as measured by gluten index, was independent of semolina extraction rate. Dough strength, as measured by mixograph properties and alveograph properties, showed a tendency to weakening at high extraction, particularly for strong cultivars. Semolina was processed into spaghetti using low-temperature (LT), high-temperature (HT) and ultra-high-temperature (UHT) drying cycles. The firmness of cooked spaghetti was predominantly influenced by protein content. As a result, cultivars generally ranked in spaghetti firmness according to protein content. Regardless of drying cycle or cultivar, spaghetti firmness increased as drying temperature increased. Spaghetti dried at LT was less yellow than spaghetti dried at HT or UHT, probably due to thermal inactivation of the bleaching enzyme lipoxygenase at HT and UHT. Regardless of drying cycle, spaghetti became duller, more red and less yellow as extraction rate increased. For each spaghetti trait, cultivar ranking remained relatively constant regardless of extraction rate or drying temperature. On the basis of these results, there appears to be no advantage to increasing semolina extraction rate beyond 65% for evaluation of durum wheat milling performance, gluten strength or pasta properties. In addition, it appears that one drying cycle is adequate to reliably evaluate durum wheat lines for spaghetti colour and firmness. Key words: Durum wheat (Triticum turgidum L. var durum), milling, semolina, pasta, quality screening, gluten strength, colour, texture


2005 ◽  
Vol 56 (12) ◽  
pp. 1355 ◽  
Author(s):  
Anna Mantzavinou ◽  
Penelope J. Bebeli ◽  
Pantouses J. Kaltsikes

Using the random amplified polymorphic DNA (RAPD) method, the genetic diversity of 19 Greek landraces and 9 cultivars of durum wheat [Triticum turgidum L. var. durum (Desf.)] was studied. Two commercial bread wheat (Triticum aestivum L.) cultivars and one genotype of Triticum monococcum L. were also included in the study. Eighty-seven arbitrary primers (10-mer) were evaluated in a preliminary experiment and 15 of them were selected for the main experiments based on the quality and reliability of their amplification and the polymorphism they revealed. A total of 150 DNA bands were obtained, 125 (83.3%) of which were polymorphic. On average, 10 DNA bands were amplified per primer, 8.3 of which were polymorphic. The genetic similarity between all pairs of genotypes was evaluated using the Jaccard’s or Nei and Li’s coefficients; the values of the former ranged from 0.153 to 0.973 while those of the latter were slightly higher (0.265–0.986). Cluster analysis was conducted by the UPGMA and the Njoin methods. Both methods broadly placed 26 durum genotypes into 1 branch while the other branch consisted of 2 subgroups: 1 included the 2 bread wheat cultivars; the other 1 consisted of 2 durum landraces, ‘Kontopouli’ and ‘Mavrotheri-Chios’, which showed an intruiging behaviour sharing bands with the bread wheat cultivars. The T. monococcum cultivar stood apart from all other genotypes.


2004 ◽  
Vol 31 (11) ◽  
pp. 1105 ◽  
Author(s):  
Megan P. Lindsay ◽  
Evans S. Lagudah ◽  
Ray A. Hare ◽  
Rana Munns

Salinity affects durum wheat [Triticum turgidum L. ssp. durum (Desf.)] more than it affects bread wheat (Triticum aestivum L.), and results in lower yield for durum wheat cultivars grown on salt-affected soils. A novel source of salt tolerance in the form of a sodium exclusion trait, identified previously in a screen of tetraploid wheat germplasm, was mapped using a QTL approach. The trait, measured as low Na+ concentration in the leaf blade, was mapped on a population derived from a cross between the low Na+ landrace and the cultivar Tamaroi. The use of AFLP, RFLP and microsatellite markers identified a locus, named Nax1 (Na exclusion), on chromosome 2AL, which accounted for approximately 38% of the phenotypic variation in the mapping population. Markers linked to the Nax1 locus also associated closely with low Na+ progeny in a genetically unrelated population. A microsatellite marker closely linked to the Nax1 locus was validated in genetically diverse backgrounds, and proven to be useful for marker-assisted selection in a durum wheat breeding program.


Sign in / Sign up

Export Citation Format

Share Document