Reducing or eliminating the dry period of dairy cows

2006 ◽  
Vol 46 (7) ◽  
pp. 957 ◽  
Author(s):  
C. R. Stockdale

This review considers the research that has been conducted recently on reducing the length of the dry period of dairy cows, with particular emphasis on the effects of eliminating the dry period altogether. Milk yield in the subsequent lactation is reduced by up to 25%, but this loss is offset to some degree by the milk produced when cows would otherwise be dry. The lower subsequent milk yield in cows continuously milked is most likely to be a consequence of changes in the mammary gland during late gestation rather than insufficient feed or body condition to maintain milk synthesis. Shortening or eliminating the dry period may result in a lower incidence of metabolic problems post-partum, and a reduced negative energy balance in early lactation due to the maintenance of dietary intake while milk yields and body condition loss are reduced. The reductions in both body condition loss and negative energy balance may have a beneficial influence on reproductive performance. However, it is concluded that more research, particularly with cows that graze pasture during lactation, together with an economic appraisal, is needed before it could be recommended that Australian dairy farmers change their current dry period practices, particularly if continuous milking was to be considered.

Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1674
Author(s):  
Ilona Strączek ◽  
Krzysztof Młynek ◽  
Agata Danielewicz

A significant factor in improving the performance of dairy cows is their physiological ability to correct a negative energy balance (NEB). This study, using Simmental (SIM) and Holstein-Friesian (HF) cows, aimed to assess changes in NEB (non-esterified fatty acid; body condition score; and C16:0, C18:0, and C18:1) and its effect on the metabolic efficiency of the liver (β-hydroxybutyrate and urea). The effects of NEB on daily yield, production at peak lactation and its duration, and changes in selected milk components were assessed during complete lactation. Up to peak lactation, the loss of the body condition score was similar in both breeds. Subsequently, SIM cows more efficiently restored their BCS. HF cows reached peak lactation faster and with a higher milk yield, but they were less able to correct NEB. During lactation, their non-esterified fatty acid, β-hydroxybutyrate, C16:0, C18:0, C18:1, and urea levels were persistently higher, which may indicate less efficient liver function during NEB. The dynamics of NEB were linked to levels of leptin, which has anorectic effects. Its content was usually higher in HF cows and during intensive lactogenesis. An effective response to NEB may be exploited to improve the production and nutritional properties of milk. In the long term, it may extend dairy cows’ productive life and increase lifetime yield.


2001 ◽  
Vol 26 (2) ◽  
pp. 371-374 ◽  
Author(s):  
C.P. Ferris ◽  
M.A. McCoy ◽  
S.D. Lennox ◽  
D.C. Catney ◽  
F.J. Gordon

AbstractThe development of production systems, which allow increased nutrient intakes to be achieved, is a key issue in the management of high genetic merit dairy cows. Consequently, forty high genetic merit autumn calving dairy cows (PTA95fat + protein = 38.2 kg) were managed on either a ‘high forage (HF)’ or ‘high concentrate (HC)’ based system of milk production for the first 305 days of lactation, with the study encompassing both the indoor winter and outdoor summer grazing periods. System HF involved a high feed value silage, a lax grazing regime, and a low concentrate input (842 kg DM), while system HC involved a medium feed value silage, a tighter grazing regime and a higher concentrate input (2456 kg DM). Total milk outputs with each of systems HF and HC were 7854 and 8640 kg respectively (P<0.01), illustrating that high genetic merit cows can perform satisfactorily on very different inputs over a single lactation. However animals on system HF experienced a more extreme and prolonged period of negative energy balance post partum than those on system HC, and completed the winter with a significantly lower condition score. Detailed fertility records were maintained for all animals on the study. Days to first observed heat were 51.2 and 59.3 with systems HF and HC respectively, while the respective conception rates to first service were 26 and 21%. The number of services/conception were 2.22 and 2.50, while the calving interval was 390 and 404 days for systems HF and HC respectively. Despite the greater degree of negative energy balance associated with system HF, none of the fertility measures was significantly affected by system of milk production (P>0.05), although fertility with both systems was poor. There were no obvious reasons for the poor fertility noted in this trial.


2011 ◽  
Vol 31 (suppl 1) ◽  
pp. 11-17 ◽  
Author(s):  
Alejandra M.B García ◽  
Felipe C Cardoso ◽  
Rómulo Campos ◽  
Diego X Thedy ◽  
Félix H.D González

In early lactation dairy cattle suffer metabolic alterations caused by negative energy balance, which predisposes to fatty liver and ketosis. The aim of this study was to evaluate the metabolic condition of high yielding dairy cows subjected to three treatments for preventing severe lipomobilization and ketosis in early lactation. Fifty four multiparous Holstein cows yielding >30 L/day were divided into four groups: control (CN= no treatment), glucose precursor (PG= propylene-glycol), hepatic protector (Mp= Mercepton®), and energy supplement with salts of linolenic and linoleic faty acids (Mg-E= Megalac-E®). Treatments were administrated randomly at moment of calving until 8 weeks postpartum. Blood samples were collected on days 1, 7, 14, 21, 28, 35, 42 and 49 postpartum. Body condition score (BCS) was evaluated at the same periods and milk yield was recorded at 2nd, 4th, 5th, 6th, 7th, and 8th weeks of lactation. Concentrations of non-esterified fatty acids (NEFA), albumin, AST, ß-hydroxybutyrate (BHBA), cholesterol, glucose, total protein, urea and triglycerides were analyzed in blood samples. Cut-off points for subclinical ketosis were defined when BHBA >1.4 mmol/L and NEFA >0.7 mmol/L. General occurrence of subclinical ketosis was 24% during the period. An ascendant curve of cholesterol and glucose was observed from the 1st to the 8th week of lactation, while any tendency was observed with BHBA and NEFA, although differences among treatments were detected (p<0.05). BCS decreased from a mean of 3.85 at 1st week to 2.53 at 8th week of lactation (p=0.001). Milk yield was higher in the Mg-E group compared with the other treatment groups (p<0.05) Compared with the CN group, the treatments with Mp and PG did not show significant differences in blood biochemistry and milk yield. Cows receiving PG and Mg-E showed higher values of BHBA and NEFA (P<0.05), indicating accentuated lipomobilization. Supplementation with Mg-E also resulted in significant higher concentrations of cholesterol, BHBA, urea, AST and lower values of glycemia. This performance may be explained by the highest milk yield observed with this treatment. Treatments with PG and Mp did not improve milk yield, compared with control cows, but did not show metabolic evidence of ketosis, fat mobilization or fatty liver. These results suggest that treatment with Mg-E improves milk production but induces a higher negative energy balance leading to moderated lipomobilization and ketone bodies production, increasing the risk of fatty liver.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 309
Author(s):  
Deise Aline Knob ◽  
André Thaler Neto ◽  
Helen Schweizer ◽  
Anna C. Weigand ◽  
Roberto Kappes ◽  
...  

Crossbreeding in dairy cattle has been used to improve functional traits, milk composition, and efficiency of Holstein herds. The objective of the study was to compare indicators of the metabolic energy balance, nonesterified fatty acids (NEFA), beta-hydroxybutyrate (BHBA), glucose, body condition score (BCS) back fat thickness (BFT), as well as milk yield and milk composition of Holstein and Simmental cows, and their crosses from the prepartum period until the 100th day of lactation at the Livestock Center of the Ludwig Maximilians University (Munich, Germany). In total, 164 cows formed five genetic groups according to their theoretic proportion of Holstein and Simmental genes as follows: Holstein (100% Holstein; n = 9), R1-Hol (51–99% Holstein; n = 30), first generation (F1) crossbreds (50% Holstein, 50% Simmental; n = 17), R1-Sim (1–49% Holstein; n = 81) and Simmental (100% Simmental; n = 27). The study took place between April 2018 and August 2019. BCS, BFT blood parameters, such as BHBA, glucose, and NEFA were recorded weekly. A mixed model analysis with fixed effects breed, week (relative to calving), the interaction of breed and week, parity, calving year, calving season, milking season, and the repeated measure effect of cow was used. BCS increased with the Simmental proportion. All genetic groups lost BCS and BFT after calving. Simmental cows showed lower NEFA values. BHBA and glucose did not differ among genetic groups, but they differed depending on the week relative to calving. Simmental and R1-Sim cows showed a smaller effect than the other genetic groups regarding changes in body weight, BCS, or back fat thickness after a period of a negative energy balance after calving. There was no significant difference for milk yield among genetic groups, although Simmental cows showed a lower milk yield after the third week after calving. Generally, Simmental and R1-Simmental cows seemed to deal better with a negative energy balance after calving than purebred Holstein and the other crossbred lines. Based on a positive heterosis effect of 10.06% for energy corrected milk (ECM), the F1, however, was the most efficient crossbred line.


Proceedings ◽  
2020 ◽  
Vol 73 (1) ◽  
pp. 9
Author(s):  
Deise Aline Knob ◽  
André Thaler Neto ◽  
Helen Schweizer ◽  
Anna Weigand ◽  
Roberto Kappes ◽  
...  

Depending on the breed or crossbreed line, cows have to cope with a more or less severe negative energy balance during the period of high milk yields in early lactation, which can be detected by beta-hydroxybutyrate (BHBA) and non-esterified fatty acids (NEFAs) in blood. Preventing cows from undergoing a severe negative energy balance by breeding and/or feeding measures is likely to be supported by the public and may help to improve the sustainability of milk production. The aim was to compare BHBA and NEFA concentrations in the blood of Holstein and Simmental cows and their crosses during the prepartum period until the end of lactation. In total, 164 cows formed five genetic groups according to their theoretic proportion of Holstein and Simmental genes as follows: Holstein (100% Holstein; n = 9), R1-Hol (51–99% Holstein; n = 30), F1 crossbreds (50% Holstein, 50% Simmental; n = 17), R1-Sim (1–49% Holstein; n = 81) and Simmental (100% Simmental; n = 27). NEFA and BHBA were evaluated once a week between April 2018 and August 2019. A mixed model analysis with fixed effects breed, week (relative to calving), the interaction of breed and week, parity, calving year, calving season, milking season, and the repeated measure effect on cows was used. Holstein cows had higher NEFAs (0.196 ± 0.013 mmol/L), and Simmental cows had the lowest NEFA concentrations (0.147 ± 0.008 mmol/L, p = 0.03). R1-Sim, F1 and R1-Hol cows had intermediate values (0.166 ± 0.005, 0.165 ± 0.010, 0.162 ± 0.008 mmol/L; respectively). The highest NEFA value was found in the first week after calving (0.49 ± 0.013 mmol/L). BHBA did not differ among genetic groups (p = 0.1007). There was, however, an interaction between the genetic group and week (p = 0.03). While Simmental, R1-Sim and F1 cows had the highest BHBA value, the second week after calving (0.92 ± 0.07 and 1.05 ± 0.04, and 1.10 ± 0.10 mmol/L, respectively), R1-Hol and Holstein cows showed the BHBA peak at the fourth week after calving (1.16 ± 0.07 and 1.36 ± 0.12 mmol/L, respectively). Unexpectedly, Holstein cows had a high BHBA peak again at week 34 after calving (1.68 ± 0.21 mmol/L). The genetic composition of the cows affects NEFA and BHBA. Simmental and R1-Sim cows mobilize fewer body reserves after calving. Therefore, dairy cows with higher degrees of Simmental origin might be more sustainable in comparison with Holstein genetics in the present study.


2019 ◽  
Vol 74 (10) ◽  
pp. 6133-2019
Author(s):  
YUANYUAN CHEN ◽  
ZHIHAO DONG ◽  
RUIRUI LI ◽  
CHUANG XU

Negative energy balance (NEB) is a common pathological cause of ketosis. As the major organs of lipid metabolism, the liver and fat tissue take part in regulating lipid oxidative capacity and energy demands, which is also a key metabolic pathway that regulates NEB development during the perinatal period. Fibroblast Growth Factor 21 (FGF21) is a novel metabolic regulator involved in the control of fatty acid oxidation and lipid metabolism during a prolonged negative energy balance. Our study determined a correlation between serum FGF21 and β-hydroxybutyric acid (BHBA) levels in dairy cows with ketosis. We used sixty cows with low milk yield, abnormal glucose metabolism, and ketosis. Serum FGF21 and BHBA levels were measured using commercial kits. Serum FGF21 increased with increasing BHBA levels up to 1.6 mmol/L. At BHBA levels > 1.6 mmol/L, FGF21 decreased. Serum FGF21 levels were positively associated with BHBA levels, particularly in dairy cows with subclinical ketosis (r = 0.647, P < 0.01). At BHBA levels between 1.2 mmol/L and 1.6 mmol/L, FGF21 was more closely correlated with BHBA than with other metabolic parameters. At BHBA levels > 1.6 mmol/L, the association between FGF21 and BHBA was not significant. In conclusion, our results show that FGF21 was closely related with SK in cows. FGF21 may be a promising regulator in the prevention of subclinical ketosis.


2021 ◽  
pp. 2392-2396
Author(s):  
Sumpun Thammacharoen ◽  
Sapon Semsirmboon ◽  
Somchai Chanpongsang ◽  
Narongsak Chaiyabutr ◽  
Pawares Panyasomboonying ◽  
...  

Background and Aim: Metabolism and environment are closely related. Under high ambient temperature (HTa), dairy cows may have different energy metabolism during summer and winter. The present study was carried out to investigate the effect of HTa on the milk yield and blood concentration of beta-hydroxybutyrate (BHBA) and glucose at the herd level. Materials and Methods: One large dairy farm in Thailand with more than 100 crossbred Holstein cows milked each month was selected. The first experiment was performed on non-lactating cows to determine the normal daily concentrations of blood BHBA and glucose. Under the HTa condition, there was no significant change in blood BHBA and glucose concentrations. The second experiment was performed using a prospective cohort clinical design to demonstrate the seasonal effect on milk yield and blood BHBA as an indication of energy metabolism at the herd level. Results: The temperature and humidity index for the winter (78.1±0.5) and summer (83.4±0.7) periods differ significantly. The average milk yield during the winter period was 17.8% higher than during the summer period. The reduction of body condition score (BCS) during early lactation was significant in the winter cows. Both higher milk yield and lower BCS in the winter cows suggested a state of negative energy balance. However, there was no difference in blood BHBA and glucose concentrations between winter and summer cows. The effect of HTa on insulin signaling appeared to be a counterbalancing factor for the ketogenic status. Based on the present results, it would be interesting to further investigate the incidence of subclinical and clinical ketosis in a dairy farm under tropical conditions. Conclusion: The present experiment revealed that HTa during summer decreased milk yield in dairy cows fed under tropical conditions. Higher milk yield in winter caused a greater reduction of BCS and suggested a greater negative energy balance. However, there was no seasonal effect on blood BHBA and glucose concentrations.


2001 ◽  
Vol 2001 ◽  
pp. 215-215 ◽  
Author(s):  
D.R. Mackey ◽  
A.R.G. Wylie ◽  
J.F. Roche ◽  
J.M. Sreenan ◽  
M.G. Diskin

Severe negative energy balance (NEB) in the postpartum period of dairy cows may be associated with declining fertility but the mechanisms by which nutrition influences reproduction are complex, poorly understood and confounded by lactation. Hence, both chronic and acute nutritional restriction of beef heifers have been used as models to examine the effects of NEB on ovarian and endocrine responses in the absence of lactation. Plasma IGF-I concentrations gradually decreased until the onset of anoestrus (Stagg et al., 1999) but concentrations may be confounded with stage of the oestrous cycle, especially around ovulation (Mackey et al., 2000). Therefore, the aim of this study was to examine the effect of nutritional restriction on periovulatory oestradiol (E2) and IGF-I concentrations.


Sign in / Sign up

Export Citation Format

Share Document