Assessment of methods of re-seeding subterranean clover near Esperance, Western Australia

1985 ◽  
Vol 25 (4) ◽  
pp. 886 ◽  
Author(s):  
MDA Bolland

In 1979 and 1980, three methods of re-seeding subterranean clover were investigated near Esperance, Western Australia: seeding just before the break to the season (dry-seeding), and seeding after the break, after killing the emerging pasture by mechanical cultivations or with herbicides. Sowing subterranean clover into a cereal stubble just prior to the break of the winter growing season, followed by continuous grazing after emergence to pr, vent overtopping of the clover seedlings, was he most economical method. It did not involve costs associated with the other methods (ploughing and scarifying, or herbicides and spraying), it produced between five and twenty times as much dried herbage in winter as was produced by the other methods, and had twice the sheep-carrying capacity in winter. The differences in clover seed yields between the three methods were not statistically significant, but yields were reduced by about 30% when grazing of dry-seeded treatments in cereal stubble was delayed until 6 weeks after emergence of seedlings, because of a 30% decrease in the number of clover seedlings.

1967 ◽  
Vol 7 (24) ◽  
pp. 25 ◽  
Author(s):  
GB Taylor ◽  
RC Rossiter

Seed production and persistence of the Carnamah, Northam A, Dwalganup, and Geraldton strains of subterranean clover (Trifolium subterraneum L.) were examined in undefoliated swards in the wheatbelt of Western Australia. The early flowering characteristic of Carnamah was not always associated with higher seed yields. Only when there was a well-defined, early finish to the growing season, or when flowering was very much earlier in Carnamah (viz., following an early 'break' to the season), did this strain clearly outyield both Northam A and Geraldton. The seed yield of Dwalganup was generally inferior to that of the other strains. Factors affecting regeneration are discussed. Under low rainfall conditions, poorer germination-regulation of Carnamah, compared with Geraldton and Northam A, would be expected to result in poorer persistence unless offset by higher seed yields in the Carnamah strain.


1974 ◽  
Vol 14 (70) ◽  
pp. 632 ◽  
Author(s):  
GB Taylor ◽  
RC Rossiter

Two experiments are described: one in the wheatbelt in areas receiving 320 and 400 mm average annual rainfall, and the other in a medium rainfall area with an average rainfall of 640 mm. In the first experiment various combinations of barrel medic (Medicago truncatula) and cupped (Trifolium cherleri) and rose clovers (T. hirtum) with subterranean clover (T. subeterraneum) were grown at four sites. Each site was continuously grazed by sheep for periods ranging from three to five years. At all sites subterranean clover became dominant within a few years of establishment. The second experiment involved rose and subterranean clovers in ungrazed pure swards and mixed swards which were either grazed or ungrazed. Grazing was continued for three years. Grazing had a profound effect on the composition of the mixture: whereas subterranean clover dominated the grazed sward, in the absence of grazing rose clover over-topped the subterranean clover and dominated the mixture. The success of subterranean clover in grazed mixtures is attributed largely to relative inaccessibility to the grazing animal, particularly of seedlings but also of seeds.


1981 ◽  
Vol 32 (5) ◽  
pp. 783 ◽  
Author(s):  
WJ Collins

The effects of length of growing season and defoliation on seed yield and hard-seededness were examined in two strains of subterranean clover (Seaton Park, Midland B) grown in swards in the field. All plots were sown at the same time and the length of growing season was varied by altering the time of finish of the season (by withholding water). There were three length of growing season treatments: T1 (short), T2 (intermediate) and T3 (control). The defoliation treatments were D0, uncut (control), and D1, defoliated at weekly intervals until the commencement of flowering. Reducing the length of growing season drastically reduced seed yield. Thus when the growing season was only 3 weeks shorter than the control (i.e. T2 compared with T3), seed yields averaged over strains and defoliations were reduced by at least one half. With a further reduction of 2 weeks in the length of the season (T1) seed yields were only about one-third of those obtained in the control (T3). The reductions in seed yield were due to reductions in both the number of mature burrs produced and to a lesser extent in mean weight per seed. Although defoliation increased seed yield in all growing seasons, the effect when measured on a relative scale was greater in T2 than in either T1 or T3. But on an absolute scale the size of the response was greater in T2 and T3 than in T1. The rate of breakdown of hard-seededness was faster in Seaton Park than in Midland B, but it decreased in both strains with increasing length of growing season.


2009 ◽  
Vol 60 (1) ◽  
pp. 43 ◽  
Author(s):  
Tiernan A. O'Rourke ◽  
Tim T. Scanlon ◽  
Megan H. Ryan ◽  
Len J. Wade ◽  
Alan C. McKay ◽  
...  

Pasture decline is considered to be a serious challenge to agricultural productivity of subterranean clover across southern Australia. Root disease is a significant contributing factor to pasture decline. However, root disease assessments are generally carried out in the early part of the growing season and in areas predominantly sown to permanent pastures. For this reason, in spring 2004, a survey was undertaken to determine the severity of root disease in mature subterranean clover plants in pastures located in the wheatbelt of Western Australia. DNA-based soil assays were used to estimate population density in the soil of a variety of soil-borne pathogens known to commonly occur in the Mediterranean-type environments of southern Australia. The relationships between severity of disease on tap and lateral roots and root diameter, root length, nodulation, and total rainfall were determined. The survey showed, for the first time, that severe root disease is widespread in spring across the wheatbelt of Western Australia. There was a positive correlation between rainfall and tap root disease, and between tap root disease and average root diameter of the entire root system. Despite the high levels of root disease present across the sites, the DNA of most root disease pathogens assayed was detected in trace concentrations. Only Pythium Clade F showed high DNA concentrations in the soil. DNA concentrations in the soil, in particular for Phytophthora clandestina and Rhizoctonia solani AG 2.1 and AG 2.2, were higher in the smaller autumn sampling in 2006. This study suggests that the productivity of subterranean clover-based pastures is severely compromised by root rot diseases throughout the growing season in the wheatbelt of Western Australia.


2007 ◽  
Vol 47 (8) ◽  
pp. 927 ◽  
Author(s):  
M. D. A. Bolland ◽  
I. F. Guthridge

For the first time, we quantified pasture dry matter (DM) responses to applied fertiliser nitrogen (N) for intensively grazed, rain-fed, dairy pastures on sandy soils common in the Mediterranean-type climate of south-western Australia. The pastures are composed of subterranean clover (Trifolium subterraneum L.) and annual and Italian ryegrass (Lolium rigidum Gaud. and L. multiflorum Lam.). Six rates of N, as urea (46% N), were applied to 15 m by 15 m plots four times during 2002 and after each of the first 5–7 grazings in 2003 and 2004, throughout the typical April–October growing season. Total rates of N applied in the first year of the experiments were 0, 60, 120, 160, 200 and 320 kg N/ha, which were adjusted in subsequent years as detailed in the ‘Materials and methods’ section of this paper. The pastures in the experiments were rotationally grazed, by starting grazing when ryegrass plants had 2–3 leaves per tiller. The amount of pasture DM on each plot was measured before and after each grazing and was then used to estimate the amount of pasture DM consumed by the cows at each grazing for different times during the growing season. Linear increases (responses) of pasture DM to applied N occurred throughout the whole growing season when a total of up to 320 kg N/ha was applied in each year. No maximum yield plateaus were defined. Across all three experiments and years, on average in each year, a total of ~5 t/ha consumed DM was produced when no N was applied and ~7.5 t/ha was produced when a total of 200 kg N/ha was applied, giving ~2.5 t/ha increase in DM consumed and an N response efficiency of ~12.5 kg DM N/kg applied. As more fertiliser N was applied, the proportion of ryegrass in the pasture consistently increased, whereas clover content decreased. Concentrations of nitrate-N in the DM consistently increased as more N was applied, whereas concentrations of total N, and, therefore, concentration of crude protein in the DM, either increased or were unaffected by applied N. Application of N had no effect on concentrations of other mineral elements in DM and on dry matter digestibility and metabolisable energy of the DM. The results were generally consistent with findings of previous pasture N studies for perennial and annual temperate and subtropical pastures. We have shown that when pasture use for milk production has been maximised in the region, it is profitable to apply fertiliser N to grow extra DM consumed by dairy cows; conversely, it is a waste of money to apply N to undergrazed pastures to produce more unused DM.


1973 ◽  
Vol 13 (64) ◽  
pp. 549 ◽  
Author(s):  
RCG Smith ◽  
EF Biddiscombe ◽  
WR Stern

Newly sown pure swards of Wimmera ryegrass (Lolium rigidum) and subterranean clover (Trifolium subterraneum) were either grazed or spelled (deferred) for five weeks after emergence in autumn and then evaluated with young Merino wethers stocked at 10 sheep ha-1. Sheep on deferred pastures had higher intakes and liveweight than on plots continuously grazed. Spelling increased the availability of pasture for prehension due to a greater weight of herbage being offered and the more erect growth form. Under continuous grazing the animal productivity on clover was much lower than on ryegrass but following deferment, both species had similar productivity. The beneficial effects of spelling after emergence were manifest over the ensuing ten months by liveweight, fleeceweight and number of days of grazing. Spelling also increased seed reserves at the end of summer and the number of plants re-establishing at the beginning of the next growing season.


1971 ◽  
Vol 11 (49) ◽  
pp. 202 ◽  
Author(s):  
WR Scott

Six cultivars of subterranean clover, Geraldton, Yarloop, Woogenellup, Clare, Mount Barker, and Tallarook, were grown as ungrazed swards at 1,700 feet a.s.1. in the Mackenzie Country of South Canterbury, New Zealand. In this very frosty environment seed yields tended to increase with increasing lateness of flowering although Clare and perhaps Tallarook appeared to be more frost susceptible than the other cultivars. It is suggested that the deleterious effects of frosts in reducing the seed yields of subterranean clover may have been overemphasized in the past and that the trend for seed yields to increase with increasing lateness of flowering can be partially explained by differences in runner production.


1995 ◽  
Vol 35 (2) ◽  
pp. 189 ◽  
Author(s):  
JA Fortune ◽  
PS Cocks ◽  
CK Macfarlane ◽  
FP Smith

The size and composition of pasture legume seedbanks were estimated from 2 surveys on a 460-km west-east transect of the wheatbelt of Western Australia. Survey 1 (in spring) sampled naturalised legumes, and survey 2 (in summer) measured the amount and botanical composition of legume seed from selected sites. Seedbanks were examined in greater detail on 2 farms in the higher rainfall part of the wheatbelt. Survey 2 revealed that mean seedbank size of the poorest 40% of sites (those with 5200 kg seed/ha) was 61 kg/ha, and that 72% of seeds were naturalised clovers. In contrast, the best 60% of sites (those with >200 kg seed/ha) averaged 533 kg seed/ha, of which only 35% was naturalised clover seed, the remainder in both surveys being mainly subterranean clover (Trifolium subterraneum). Mean seed bank size (kg/ha) varied from 359 (survey 2) to 587 (survey 1) and, in both surveys, was poorly correlated with long-term mean annual rainfall and a number of soil parameters. On the 2 farms, seedbank size ranged from 300 to 345 kg/ha (in spring) and from 650 to 740 kg/ha (in summer). Trifolium glomeratum (cluster clover) and subterranean clover were the most widespread species in both surveys. They were present at 35 and 30 of the 57 survey sites, respectively, and at both farms. Most of the subterranean clover collected was cv. Geraldton (22 of 30 sites), the next most frequent cultivar was Dwalganup (6 sites). The currently recommended cultivar, Dalkeith, was found at only 5 sites. Several other legumes including T. tomentosum (16 sites), T. suffocatum (8 sites), Medicago truncatula (7 sites), T. hirtum (4 sites), and M. minima (4 sites) were common, while M. littoralis, M. polymorpha, T. dubium, T. cernuum, T. cherleri, and T. carnpestre were found at single sites. With few exceptions, these are naturalised species and were characterised by flowering times about 20 days later than sown legume cultivars, and seed sizes < 1 mg. The value of these widespread annual legumes to agricultural productivity and sustainability needs to be quantified and their adaptation to wheatbelt farming systems assessed.


1992 ◽  
Vol 32 (8) ◽  
pp. 1095 ◽  
Author(s):  
BS Dear ◽  
DJ Conlan ◽  
MF Richards ◽  
NE Coombes

The tolerance of 6 cultivars of Trifolium subterraneum (subterranean clover) to simazine applied at 0.63 and 1.25 kg a.i./ha was determined under weedfree conditions in the field by measuring herbage and seed yields. Large herbage yield losses occurred as a result of the simazine in spring in the 2 years of the experiments. In 1989, spring herbage yield losses of the cultivars at the 0.63 and 1.25 kg/ha simazine rates averaged 56 and 82%, respectively. In 1990 the spring herbage yield losses were 27 and 51%. Significant variation in tolerance was observed between cultivars in both years, with Trikkala being the most tolerant and Karridale the most susceptible cultivar. Rate of herbicide had the greatest effect on herbage yield, with cultivar having a smaller effect. In 1989, with relatively favourable spring conditions, clover seed yields were depressed by simazine, but in 1990 when drier conditions prevailed during flowering and seed set, seed yields were unaffected or slightly increased by simazine in all cultivars except the early-flowering cultivar Dalkeith. Seed yields of simazine-treated swards were 196-1480 kg/ha in 1989 and 359-686 kg/ha in 1990. The seed yield response in 1990 suggests that herbicides which retard growth in winter help to conserve soil water and, therefore, may benefit seed filling later in the season. The presence of Lolium rigidum at spraying did not reduce the effect of the herbicide on clover herbage yield and had no effect on seed set. Although simazine may reduce herbage yields and, in some cases, seed yields, its use may be justified for the control of annual grasses when other factors such as disease control, pasture quality, and level of weed competition are considered.


Soil Research ◽  
2000 ◽  
Vol 38 (1) ◽  
pp. 47 ◽  
Author(s):  
Graham H. R. Osler ◽  
Petra C. J. van Vliet ◽  
Craig S. Gauci ◽  
Lynette K. Abbott

Diversification of the crops used in wheat production systems provides alternative sources of income and can interrupt wheat pathogen lifecycles. Two important alternative crops in Western Australia are canola and lupins, which may both improve growth of following wheat. Improved growth of wheat following canola may be the consequence of biofumigation or increased root penetration by the wheat. Available nitrogen may be increased following lupins. We examined free-living soil fauna in a canola–wheat–lupin rotation near Moora, Western Australia, to determine the effects of these crops on the soil fauna. Each crop in the rotation was sampled in June, August, and October 1998. Nematodes were sorted into functional groups and arthropods were sorted to order level. Prostigmatid mites were the dominant arthropod group and they were sorted to morphospecies. An active and abundant faunal community was present under all crops, demonstrating that the canola variety in this study, Pinnacle TT, did not eliminate the free-living fauna. The structure of the mite communities changed throughout the year and the changes were different under the 3 crops. The soil arthropod communities were distinctly different under lupins compared with the other crops at the end of the growing season in 2 ways. First, 5 times more animals were present under the lupins than under wheat or canola, primarily due to an increase in the numbers of a tydeid and a tarsonemid mite species. Second, the tarsonemid species was always the second most abundant species under lupins but was infrequently the second ranked species under the other 2 crops. The soil arthropod communities were also different at the start of the growing season when the prostigmatid community under canola was dominated by a rhagidiid species, whilst under lupins and wheat a caligonellid and eupodid species dominated. The canola followed a lupin crop and therefore the difference in June may be attributed to the preceding lupins. Mite data from the lupin plots were consistent with a previously described succession from another environment. We hypothesise that if net nutrient mineralisation rates are greatest at the start of a succession then net mineralisation rates under lupins may be rapid at the end of the lupin crop and slow when the next crop is planted in the remaining lupin stubble. The difference between lupins and canola in their mite communities would then imply that net mineralisation rates are a factor creating differences between the effects of break crops on the following wheat crop.


Sign in / Sign up

Export Citation Format

Share Document