Evaluation of new cultivars of triticale as dual-purpose forage and grain crops

1991 ◽  
Vol 31 (6) ◽  
pp. 769 ◽  
Author(s):  
AC Andrews ◽  
R Wright ◽  
PG Simpson ◽  
R Jessop ◽  
S Reeves ◽  
...  

Two newly registered cultivars of triticale, Tiga and Empat, were compared with existing commercial cultivars of triticale, cereal rye and forage oats, for grain yield and dry matter production. Their performance was evaluated at Armidale, New South Wales, over 3 years with varying defoliation regimes (uncut to grain yield, cut in late autumn, cut in autumn and winter, and cut in winter only). Phenological observations confirmed that Tiga and Empat were midseason cultivars, intermediate between Coolabah and Blackbutt oats. Autumn and winter forage production and organic matter digestibility of Tiga and Empat were equal to those obtained from Cooba and Blackbutt oats. Grain yields (up to 4.0 t/ha) of the highest yielding triticale cultivar (Empat) were equal to, or greater than, the best oats cultivar (Blackbutt). Generally, the highest winter growth rates, dry matter yield at maturity and grain yield were recorded from uncut plots, except in the early oats cultivar Coolabah which, in 1 experiment, lodged in spring if left undefoliated through autumn and winter. Cutting only in autumn had small effects (negative) on grain yields, but cutting in both autumn and winter reduced total dry matter yields at maturity by 30% and grain yields by 50%. Cutting only in winter resulted in higher vegetative forage yields than a double cut (autumn and winter), but the single winter cut subsequently produced lowest dry matter yields at maturity. The high grain yields of triticale were linked to rapid spring growth. Harvest indices of triticale cultivars were generally lower than those of the oat cultivars. The results indicate the potential of triticale, especially cv. Empat, as a dual-purpose forage and grain crop.


1984 ◽  
Vol 24 (125) ◽  
pp. 236
Author(s):  
GK McDonald ◽  
BG Sutton ◽  
FW Ellison

Three winter cereals (wheat varieties Songlen and WW 15, triticale variety Satu) were grown after cotton or summer fallow under three levels of applied nitrogen (0, 100 and 200 kg N/ha) at Narrabri, New South Wales. The cereals were sown on August 7, 1980 and growing season rainfall was supplemented by a single irrigation. Leaf area, total shoot dry matter production and ears per square metre were lower after cotton than after summer fallow, while grain yields of cereals sown immediately after cotton were 33% lower than those sown after fallow. Adding nitrogen increased leaf area, dry matter and grain yields of crops grown after cotton and fallow, but significant increases were not obtained with more than 100 kg/ha of applied nitrogen. Crops grown after cotton required an application of 100 kg N/ha for leaf and dry matter production at anthesis to equal that of crops grown after fallow with no additional nitrogen. The corresponding cost to grain yield of growing cotton was equivalent to 200 kg N/ha. The low grain yield responses measured in this experiment (1 8 and 10% increase to 100 kg N/ha after cotton and fallow, respectively) were attributed to the combined effects of late sowing, low levels of soil moisture and loss, by denitrification, of some of the applied nitrogen. The triticale, Satu, yielded significantly less than the two wheats (1 99 g/m2 for Satu c.f. 255 and 286 g/m2 for Songlen and WW 15, respectively), and did not appear to be a viable alternative to wheat in a cotton rotation.



Author(s):  
Yashvir S. Chauhan ◽  
Rex Williams

Mungbean [Vigna radiata (L.) Wilczek] in Australia has been transformed from a niche opportunistic crop into a major summer cropping option for dryland growers in the summer-dominant rainfall regions of Queensland and New South Wales. This transformation followed stepwise genetic improvements in both grain yields and disease resistance. For example, more recent cultivars such as ‘Crystal’, ‘Satin II’ and ‘Jade-AU‘  have provided up to a 20% yield advantage over initial introductions. Improved agronomic management to enable mechanised management and cultivation in narrow (<50 cm) rows has further promised to increase yields. Nevertheless, average yields achieved by growers for their mungbean crops remain less than 1 t/ha, and are much more variable than other broad acre crops.  Further increases in yield and crop resilience in mungbean are vital. In this review, opportunities to improve mungbean have been analysed at four key levels including phenology, leaf area development, dry matter accumulation and its partitioning into grain yield. Improving the prediction of phenology in mungbean may provide further scope for genetic improvements that better match crop duration to the characteristics of target environments. There is also scope to improve grain yields by increasing dry matter production through the development of more efficient leaf canopies. This may introduce additional production risks as dry matter production depends on the amount of available water, which varies considerably within and across growing regions in Australia. Improving crop yields by exploiting photo-thermal sensitivities to increase dry matter is likely a less risky strategy for these variable environments. Improved characterisation of growing environments using modelling approaches could also better define and identify the risks of major abiotic constraints. This would assist in optimising breeding and management strategies to increase grain yield and crop resilience in mungbean for the benefit of growers and industry.



2015 ◽  
Vol 66 (4) ◽  
pp. 308 ◽  
Author(s):  
Alison. J. Frischke ◽  
James R. Hunt ◽  
Dannielle K. McMillan ◽  
Claire J. Browne

In the Mallee region of north-western Victoria, Australia, there is very little grazing of crops that are intended for grain production. The success of dual-purpose crops in other regions in south-eastern Australia with higher and more evenly distributed rainfall has driven interest in assessing the performance of dual-purpose cereals in the region. Five experiments were established in five consecutive years (2009–13) in the southern Mallee to measure the forage production and grain yield and quality response in wheat and barley to grazing by sheep or mechanical defoliation. The first three experiments focused on spring cultivars sown from late April to June, and the last two on winter cultivars planted from late February to early March. Cereal crops provided early and nutritious feed for livestock, with earlier sowing increasing the amount of dry matter available for winter grazing, and barley consistently produced more dry matter at the time of grazing or defoliation than wheat. However, the grain-production response of cereals to grazing or defoliation was variable and unpredictable. Effects on yield varied from –0.7 to +0.6 t/ha, with most site × year × cultivar combinations neutral (23) or negative (14), and few positive (2). Changes in grain protein were generally consistent with yield dilution effects. Defoliation increased the percentage of screenings (grains passing a 2-mm sieve) in three of five experiments. Given the risk of reduced grain yield and quality found in this study, and the importance of grain income in determining farm profitability in the region, it is unlikely that dual-purpose use of current cereal cultivars will become widespread under existing grazing management guidelines for dual-purpose crops (i.e. that cereal crops can be safely grazed once anchored, until Zadoks growth stage Z30, without grain yield penalty). It was demonstrated that early-sown winter wheat cultivars could produce more dry matter for grazing (0.4–0.5 t/ha) than later sown spring wheat and barley cultivars popular in the region (0.03–0.21 t/ha), and development of regionally adapted winter cultivars may facilitate adoption of dual-purpose cereals on mixed farms.



1990 ◽  
Vol 41 (3) ◽  
pp. 449 ◽  
Author(s):  
GK McDonald

The growth and yield of two lines of uniculm barley, WID-103 and WID-105, were compared over a range of sowing rates (50-400 kg/ha) with the commercial varieties Galleon and Schooner. The experiments were conducted at Strathalbyn, S.A., in 1986, 1987 and 1988 and at the Waite Agricultural Research Institute in 1987. A third tillered variety, Clipper, was included in the comparison in 1988. Over the three years plant populations measured early in the season ranged from 39/m2 to 709/m2, and grain yields from 97 to 41 1 g/m2. Dry matter production at ear emergence increased with greater plant density, and both the tillered varieties and the uniculm lines showed similar responses to higher sowing rates. At maturity, dry matter production of the tillered barleys was greater than or equal to that of the uniculms and the harvest indices (HIs) of the two types were similar. Consequently, grain yields of the tillered types were greater than or equal to the yields of the uniculms. Over the four experiments the tillered varieties had a 6% higher yield. The number of ears/m2 was the yield component most affected by plant density in both the tillered and uniculm barleys. The uniculm lines had more spikelets/ear, but tended to set fewer grains/spikelet and produce smaller kernels. The experiments failed to demonstrate any advantage of the uniculm habit to the grain yield of barley. These results differ from previous experiments that showed that a uniculm line, WID-101, had a higher yield than the tillered variety Clipper. It is suggested that the uniculm habit per se was not the cause of this higher yield, but its higher HI resulted in it outyielding Clipper. Current varieties, however, have HIs similar to the uniculm lines and yield equally to or more than the uniculm barleys examined. To further improve the grain yield of uniculm barley, greater dry matter production is necessary as the HIs of these lines are already high.



1995 ◽  
Vol 35 (1) ◽  
pp. 93 ◽  
Author(s):  
RD FitzGerald ◽  
ML Curll ◽  
EW Heap

Thirty varieties of wheat originating from Australia, UK, USA, Ukraine, and France were evaluated over 3 years as dual-purpose wheats for the high rainfall environment of the Northern Tablelands of New South Wales (mean annual rainfall 851 mm). Mean grain yields (1.9-4.3 t/ha) compared favourably with record yields in the traditional Australian wheatbelt, but were much poorer than average yields of 6.5 t/ha reported for UK crops. A 6-week delay in sowing time halved grain yield in 1983; cutting in spring reduced yield by 40% in 1986. Grazing during winter did not significantly reduce yields. Results indicate that the development of wheat varieties adapted to the higher rainfall tablelands and suited to Australian marketing requirements might help to provide a useful alternative enterprise for tableland livestock producers.



Weed Science ◽  
1996 ◽  
Vol 44 (3) ◽  
pp. 634-639 ◽  
Author(s):  
Deirdre Lemerle ◽  
Birgitte Verbeek ◽  
Neil E. Coombes

The influence of wheat variety on the dose-response of annual ryegrass to diclofop-methyl (POST) was examined in the field in 1992 and 1993 in southern New South Wales, Australia. The aim was to determine if planting a strongly competitive variety of wheat improved control of annual ryegrass at reduced doses of diclofop-methyl. Suppression of ryegrass was dependent on herbicide dose, season, and wheat variety. In the absence of herbicide, dry matter (DM) production of annual ryegrass at 300 plants m−2at anthesis was 500 g ha−1with Dollarbird and Katunga compared to 1000 g ha−1with Rosella or Shrike in 1992. In 1993, DM was approximately 150 g ha−1with Dollarbird or Katunga, and 350 g ha−1with Shrike or Rosella. Ryegrass DM was reduced by diclofop-methyl to a greater extent, relative to the weedy unsprayed controls, with less competitive varieties Rosella and Shrike than with the more competitive Dollarbird or Katunga. Diclofop-methyl at 0.28 kg a.i. ha−1reduced DM of ryegrass growing with Katunga to less than 100 g m−2in 1992, compared to more than 200 g m2with the other varieties. In 1993, diclofop-methyl was more effective on ryegrass, and the same dose reduced ryegrass DM to almost zero in all varieties. Grain yields in unsprayed weedy controls of Dollarbird and Katunga were reduced approximately 20% by annual ryegrass compared with yields achieved with herbicides in both years. Yields of Rosella and Shrike in the unsprayed controls were reduced about 40% in 1992 and 60% in 1993. Only small increases in grain yields of all varieties occurred from diclofop-methyl doses above 0.13 kg a.i. ha−1. Poorly competitive varieties were dependent on herbicides to achieve grain yield potential and had a greater risk of weed survival when herbicide efficacy was reduced. In contrast, strongly competitive varieties, likely to retard build-up of weed seed in the soil, are less dependent on herbicides to achieve grain yield potential, and therefore result in reduced weed control cost.



2009 ◽  
Vol 49 (10) ◽  
pp. 769 ◽  
Author(s):  
K. G. McMullen ◽  
J. M. Virgona

In southern New South Wales, Australia, grazing wheat during the vegetative and early reproductive growth stages (typically during winter) can provide a valuable contribution of high quality feed during a period of low pasture growth. This paper reports results from a series of experiments investigating the agronomic management of grazed wheats in southern NSW. The effect of sowing date and grazing on dry matter production and subsequent grain yield of a range of wheat cultivars was measured in five experiments in 2004 and 2005. In all experiments, results were compared with ungrazed spring wheat (cv. Diamondbird). Grain yield of the best winter cultivar was either the same or significantly greater than the spring cultivar in each of the five experiments. Within the winter wheat cultivars, there was significant variation in grain yield, protein content and screenings, depending on site and year with the cultivar Marombi out-yielding all others. Interestingly, this cultivar usually had the least dry matter post-grazing but the greatest dry matter by anthesis of the winter wheats. Generally, if sowing of the winter wheat was delayed, then the effects on yield were small or non-existent. The results are discussed with respect to the benefits of incorporating grazing cereals into cropping programs in the medium rainfall zone of southern Australia.



2014 ◽  
Vol 65 (11) ◽  
pp. 1147 ◽  
Author(s):  
Philip J. Larkin ◽  
Matthew T. Newell ◽  
Richard C. Hayes ◽  
Jesmin Aktar ◽  
Mark R. Norton ◽  
...  

Dual-purpose cereals have been important for increasing the flexibility and profitability of mixed farming enterprises in southern Australia, providing winter feed when pasture dry matter production is low, and then recovering to produce grain. A perennial dual-purpose cereal could confer additional economic and environmental benefits. We establish that, at the end of a second growth season, selected perennial cereals were able to achieve up to 10-fold greater below-ground biomass than a resown annual wheat. We review and expand the data on available, diverse, perennial, wheat-derived germplasm, confirming that perenniality is achievable but that further improvements are essential through targeted breeding. Although not yet commercially deployable, the grain yields and dry matter production of the best performing lines approach the benchmarks predicted to achieve profitability. On reviewing the genomic composition of the most promising wheat-derived perennials, we conclude that the best near-term prospect of a productive breeding program for a perennial, wheat-derived cereal will utilise a diploid, perennial donor species, and the most promising one thus far is Thinopyrum elongatum. Furthermore, the breeding should be aimed at complete wheat–Th. elongatum amphiploids, a hybrid synthetic crop analogous to triticale. We advocate the generation of many primary amphiploids involving a diversity of Th. elongatum accessions and a diversity of adapted annual wheat cultivars. Primary perennial amphiploids would be inter-crossed and advanced with heavy, early-generation selection for traits such as semi-dwarf plant height, non-shattering heads, large seed size and good self-fertility, followed by later generation selection for robust perenniality, days to flowering, grain yield, forage yield, stability of grain yield across seasons, and disease resistance.



1966 ◽  
Vol 2 (3) ◽  
pp. 225-232 ◽  
Author(s):  
H. K. Pande ◽  
V. M. Bhan

SUMMARYFour depth of tillage treatments were given by ploughing to 7 cm. depth by bullock-drawn plough and 14, 21 and 28 cm. depth with a tractor-drawn mouldboard plough in 1962–63. A significant decrease in bulk density was observed with the 21 and 28 cm. ploughing, negatively correlated with dry matter of crop roots and yield of grain. The effectiveness of 28 cm. tillage in reducing the population and dry matter of weeds was significant when compared to tillage at 7 and 14 cm. and there were significant relations between dry matter of weeds and yield of grain. Crop roots under tractor tillage were significantly greater than with 7 cm. tillage. Grain yield was maximum under 28 cm. tillage followed by 21, 14 and 7 cm. deep tillage in that order. The higher grain yields were associated with a greater number of fertile tillers per metre of row and higher yields per tiller.



1977 ◽  
Vol 17 (86) ◽  
pp. 452 ◽  
Author(s):  
PR Dann ◽  
A Axelsen ◽  
CBH Edwards

In six years of experiments various grazing treatments were applied to a range of crops and subsequent grain yields measured. Spring rapes, lupins and peas showed little potential for dual purpose grazing/grain use, generally producing less herbage and grain than wheat, oats, barley and rye. Winter rape performed as well as barley and wheat in one year. Oats and barley were overall better than wheat which was generally better than rye. Comparison of late-sown grain-only crops with early sown grazed ones indicated that with some crops in some years the dual-purpose enterprise was the more profitable. The experiments suggested that the most biologically profitable combination of herbage and grain production would be obtained by delaying grazing until about 4t of crop dry matter per ha were available in winter.



Sign in / Sign up

Export Citation Format

Share Document