The role of nematodes, fungi, bacteria, and abiotic factors in the etiology of apple replant problems in the Granite Belt of Queensland

1994 ◽  
Vol 34 (8) ◽  
pp. 1177 ◽  
Author(s):  
SR Dullahide ◽  
GR Stirling ◽  
A Nikulin ◽  
AM Stirling

Investigations of apple replant failure in the Granite Belt suggested that the problem had a complex etiology. Soil fertility was an important factor because apple seedlings grew best in replant soils with high levels of nitrogen, phosphorus, and potassium. Consistent improvements in the growth of apple seedlings were obtained when typical orchard soils were treated with fenamiphos, confirming that lesion nematode was also an important component of the disease complex. Pratylenchus penetrans had been recognised as a pathogen of apples, and pathogenicity tests showed that P. jordanensis, another species widely distributed in the Granite Belt, had similar effects. Growth responses of apple seedlings were greater when soil was pasteurised than when it was treated with fenamiphos, suggesting that root pathogens other than nematodes were involved in apple replant failure. However, the primary cause probably differed between orchards because soils did not respond in the same manner to pasteurisation and nematicide treatments. Pathogenicity tests with 14 bacteria associated with apple roots showed no effect on the growth of apple seedlings. However, Fusarium tricinctum, Cylindrocarpon destructans, and Pythium sp. were implicated in the problem because they were consistently recovered from discoloured roots. In a factorial experiment involving nematodes and fungi in pots, P. jordanensis, P. penetrans, E. tricinctum, and C. destructans reduced the dry weight of apple roots but there was no interaction between nematodes and fungi.

2017 ◽  
Vol 7 (4) ◽  
pp. 30-34 ◽  
Author(s):  
O. A. Didur ◽  
Yu. L. Kulbachko ◽  
V. Y. Gasso

<p>The problem of transformation of natural landscapes resulted from the negative technogenic impact is highlighted. It is shown that mining enterprises are powerful anthropo-technical sources of organic and inorganic toxicants entering the environment. Their wastes pollute all components of the ecosystems and negatively influence human health by increasing a risk of disease. The nature of the accumulation of trace elements (Fe, Cu, Zn, Ni, Cd, and Pb) by invertebrate animals of various functional groups under conditions of anthropo-technogenic pressure was studied. The sample plots were located on self-overgrowing sites with ruderal vegetation located in the immediate vicinity of the Mangan ore-dressing and processing enterprise (Dnipropetrovsk region). It is quite naturally that among the studied biogenic microelements (Fe, Cu, Zn and Ni), the phyto-, zoo-, and saprophages in the investigated zone of technogenic pollution most actively accumulate Fe:<em> </em>22758, 17516 and 18884 mg/kg dry weight on average, respectively. There are significant differences (p ≤ 0.05) in the content of studied microelements between saprophages and phytophages. The saprophages accumulate such trace metals as Mn, Cu, Zn and Cd in high quantities, but Ni and Pb – in smaller ones. The saprophagous functional group of invertebrates is an active agent of detritogenesis, in the conditions of modern nature management it acts as a powerful element of ecosystem engineering (habitat transformation), the main ecological role of which is to modify the habitat of other soil biota. In addition, the saprophages fulfil their concentrating geochemical function. They actively participate in the most important soil biochemical process: the formation of humus, the migration of microelements along trophic chains, the biological cycle in general, and provide such supporting ecosystem services as increasing soil fertility and nutrient cycling.</p>


2020 ◽  
pp. 1-12
Author(s):  
E. K. Al-Fahdawe ◽  
A. A. Al-Sumaidaie ◽  
Y. K. Al-Hadithy

A pots experiment was conducted at the Department of Biology/College of Education for Girls/University of Anbar during Autumn season of 2018-2019 to study the effect of the salinity irrigation water and spray by humic acid in some of morphological, physiological, growth and yield traits of wheat cv. IPa. The experiment was randomized complete block design (RCBD) with three replications. The first factor was assigned for irrigation by saline water at four level (S0, S1, S2 and S3), while the second factor was the foliar spraying of humic acid in three level (0.0, 1.0 and 1.5 g l-1). The results showed that there was significant reduction in plant height, vegetative dry weight, biological yield and chlorophyll leaves content when the plants were irrigated by saline water approached to 41.09 cm, 0.747 g, 0.849 g plant-1 and 38.67 SPAD, respectively at salinity level of 8.3 ds m-1 compared with the plants which irrigated by fresh water. The total carbohydrates were significantly decreased at the treatment of 8.3 ds m-1 reached 18.71 mg g-1. Spray levels humic acid achieved a significant increase in plant height, dry weight of the vegetative part, biological yield and chlorophyll leaves content sprayed at 1.0 and 1.5 g l-1 compared to no sprayed. Nitrogen concentration was significantly increased, while both phosphorus and potassium were decreased in the vegetative parts of wheat as the salinity of irrigation water increased. However, the increase of humic acid levels led to significant increasing in nitrogen, phosphorus and potassium concentration.


2021 ◽  
Vol 13 (9) ◽  
pp. 5074
Author(s):  
Urooj Kanwal ◽  
Muhammad Ibrahim ◽  
Farhat Abbas ◽  
Muhammad Yamin ◽  
Fariha Jabeen ◽  
...  

Phytoremediation is a cost-effective and environmentally friendly approach that can be used for the remediation of metals in polluted soil. This study used a hedge plant–calico (Alternanthera bettzickiana (Regel) G. Nicholson) to determine the role of citric acid in lead (Pb) phytoremediation by exposing it to different concentrations of Pb (0, 200, 500, and 1000 mg kg−1) as well as in a combination with citric acid concentration (0, 250, 500 µM). The analysis of variance was applied on results for significant effects of the independent variables on the dependent variables using SPSS (ver10). According to the results, maximum Pb concentration was measured in the upper parts of the plant. An increase in dry weight biomass, plant growth parameters, and photosynthetic contents was observed with the increase of Pb application (200 mg kg−1) in soil while a reduced growth was experienced at higher Pb concentration (1000 mg kg−1). The antioxidant enzymatic activities like superoxide dismutase (SOD) and peroxidase (POD) were enhanced under lower Pb concentration (200, 500 mg kg−1), whereas the reduction occurred at greater metal concentration Pb (1000 mg kg−1). There was a usual reduction in electrolyte leakage (EL) at lower Pb concentration (200, 500 mg kg−1), whereas EL increased at maximum Pb concentration (1000 mg kg−1). We concluded that this hedge plant, A. Bettzickiana, has the greater ability to remediate polluted soils aided with citric acid application.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 788
Author(s):  
Shaban R. M. Sayed ◽  
Shaimaa A. M. Abdelmohsen ◽  
Hani M. A. Abdelzaher ◽  
Mohammed A. Elnaghy ◽  
Ashraf A. Mostafa ◽  
...  

The role of Pythium oligandrum as a biocontrol agent against Pythium aphanidermatum was investigated to avoid the harmful impacts of fungicides. Three isolates of P. oligandrum (MS15, MS19, and MS31) were assessed facing the plant pathogenic P. aphanidermatum the causal agent of Glycine max damping-off. The tested Pythium species were recognized according to their cultural and microscopic characterizations. The identification was confirmed through sequencing of rDNA-ITS regions including the 5.8 S rDNA. The biocontrol agent, P. oligandrum, isolates decreased the mycelial growth of the pathogenic P. aphanidermatum with 71.3%, 67.1%, and 68.7% through mycoparasitism on CMA plates. While the half-strength millipore sterilized filtrates of P. oligandrum isolates degrade the pathogenic mycelial linear growth by 34.1%, 32.5%, and 31.7%, and reduce the mycelial dry weight of the pathogenic P. aphanidermatum by 40.1%, 37.4%, and 36.8%, respectively. Scanning electron microscopy (SEM) of the most effective antagonistic P. oligandrum isolate (MS15) interaction showed coiling, haustorial parts of P. oligandrum to P. aphanidermatum hyphae. Furthermore, P. oligandrum isolates were proven to enhance the germination of Glycine max seedling to 93.3% in damping-off infection using agar pots and promote germination of up to 80% during soil pot assay. On the other hand, P. oligandrum isolates increase the shoot, root lengths, and the number of lateral roots.


1975 ◽  
Vol 28 (3) ◽  
pp. 301 ◽  
Author(s):  
MJ Hynes

Mutants of Apergillus nidulanswith lesions in a gene, areA (formerly called amdT), have been isolated by a variety of different selection methods. The areA mutants show a range of pleiotropic growth responses to a number of compounds as sole nitrogen sources, but are normal in utilization of carbon sources. The levels of two amidase enzymes as well as urease have been investigated in the mutants and have been shown to be affected by this gene. Most of the areA mutants have much lower amidase-specific activities when grown in ammonium-containing medium, compared with mycelium incubated in medium la9king a nitrogen source. Some of the areA. mutants do not show derepression of urease upon relief of ammonium repression. The dominance relationships of areA alleles have been investigated in� heterozygous diploids, and these studies lend support to the proposal that areA codes for a positively acting regulatory product. One of the new areA alleles is partially dominant to areA + and areA102. This may be a result of negative complementation or indicate that areA has an additional negative reiuIatory function. Investigation.of various amdR; areA double mutants has led to the conclusion that amdR and areA participate in independent regulatory circuits in the control of acetamide utilizatiol1. Studies on an amdRc; areA.double mutant indicate that areA is involved in derepression of acetamidase upon relief of ammo.nium repression.


2010 ◽  
Vol 7 (11) ◽  
pp. 3387-3402 ◽  
Author(s):  
S. Trajanovski ◽  
C. Albrecht ◽  
K. Schreiber ◽  
R. Schultheiß ◽  
T. Stadler ◽  
...  

Abstract. Ancient Lake Ohrid on the Balkan Peninsula is considered to be the oldest ancient lake in Europe with a suggested Plio-/Pleistocene age. Its exact geological age, however, remains unknown. Therefore, molecular clock data of Lake Ohrid biota may serve as an independent constraint of available geological data, and may thus help to refine age estimates. Such evolutionary data may also help unravel potential biotic and abiotic factors that promote speciation events. Here, mitochondrial sequencing data of one of the largest groups of endemic taxa in the Ohrid watershed, the leech genus Dina, is used to test whether it represents an ancient lake species flock, to study the role of potential horizontal and vertical barriers in the watershed for evolutionary events, to estimate the onset of diversification in this group based on molecular clock analyses, and to compare this data with data from other endemic species for providing an approximate time frame for the origin of Lake Ohrid. Based on the criteria speciosity, monophyly and endemicity, it can be concluded that Dina spp. from the Ohrid watershed, indeed, represents an ancient lake species flock. Lineage sorting of its species, however, does not seem to be complete and/or hybridization may occur. Analyses of population structures of Dina spp. in the Ohrid watershed indicate a horizontal zonation of haplotypes from spring and lake populations, corroborating the role of lake-side springs, particularly the southern feeder springs, for evolutionary processes in endemic Ohrid taxa. Vertical differentiation of lake taxa, however, appears to be limited, though differences between populations from the littoral and the profundal are apparent. Molecular clock analyses indicate that the most recent common ancestor of extant species of this flock is approximately 1.99 ± 0.83 million years (Ma) old, whereas the split of the Ohrid Dina flock from a potential sister taxon outside the lake is estimated at 8.30 ± 3.60 Ma. Comparisons with other groups of endemic Ohrid species indicated that in all cases, diversification within the watershed started ≤2 Ma ago. Thus, this estimate may provide information on a minimum age for the origin of Lake Ohrid. Maximum ages are less consistent and generally less reliable. But cautiously, a maximum age of 3 Ma is suggested. Interestingly, this time frame of approximately 2–3 Ma ago for the origin of Lake Ohrid, generated based on genetic data, well fits the time frame most often used in the literature by geologists.


Ecology ◽  
2002 ◽  
Vol 83 (6) ◽  
pp. 1610-1619 ◽  
Author(s):  
David A. Holway ◽  
Andrew V. Suarez ◽  
Ted J. Case

2003 ◽  
Vol 135 (1) ◽  
pp. 1-22 ◽  
Author(s):  
G. Boiteau ◽  
A. Alyokhin ◽  
D.N. Ferro

AbstractThe recent introduction of the concept of refuge areas for the management of the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera : Chrysomelidae), on resistant potato highlighted the existence of important gaps in our knowledge and understanding of this pest's movement within and between habitats. The objective of this review is to synthesize the information available for the benefit of crop managers and to identify subject areas in need of additional research. A traditional, somewhat encyclopedic, review of the old and recent literature on research methods, basics of flight and walking, as well as abiotic and biotic conditions for dispersal, revealed a considerable volume of information accumulated since the early 1900s. There is a consensus on the role of abiotic factors on flight and walking, but a better understanding of the biotic factors will be required before the variability of the dispersal response can be fully explained or predicted. Cybernetic models of orientation proposed in the literature were pulled together into a schematic representation of the orientation process in walking L. decemlineata. The model begins the integration of the different conditions and underlying suggested mechanisms responsible for the orientation of the walking beetle. There is remarkably little information on the orientation of potato beetles during flight. Finally, the seasonality of walking and flight dispersal is reviewed in relation to the host habitat and overwintering sites.


Sign in / Sign up

Export Citation Format

Share Document