scholarly journals Rare earth elements as tracers of active colloidal organic matter composition

2020 ◽  
Vol 17 (2) ◽  
pp. 133 ◽  
Author(s):  
Charlotte Catrouillet ◽  
Héléne Guenet ◽  
Anne-Catherine Pierson-Wickmann ◽  
Aline Dia ◽  
Martine Bouhnik LeCoz ◽  
...  

Environmental contextThe origin of organic matter at Earth’s continental surface can be either terrestrial or microbial, and its precise composition can influence its reactivity towards metals. We investigated the potential of rare earth elements to fingerprint the origin of various organic matters through their reactivity and composition. The rare earth element patterns can be useful tools to determine the reactivity and also pristine source of natural organic matter. AbstractRare earth elements (REEs) have been shown to be efficient tracers of the functional sites and/or complexes formed on humic molecules. In the present study, we test the potential of REEs to be used as tracers of the sources of humic substances (HSs). Three types of organic matter (OM) of terrestrial and microbiological origin were tested. The experiments of REEs binding to the HSs were combined with size-fractionation experiments. The REE patterns were the most fractionated in the <10kDa fraction. For Leonardite humic acid (LHA) and Aldrich humic acid (AHA), the REE patterns were consistent with the REEs binding to strong but low density sites for a low REE/C loading. By contrast, for Pony Lake fulvic acid (PLFA), the REE pattern was similar to the REE pattern developed onto a bacteria cell surface and was attributed to the REEs binding to phosphate surface sites. Fluorescence and elemental analysis of PLFA showed that the <10kDa fraction was the fraction with the stronger microbiological character, which suggested the REEs were probably bound to PLFA through REE-phosphate complexes. Such results therefore provide a new possibility for the use of REEs to assess an OM source without the need to perform numerous or complex analytical methodologies.

RSC Advances ◽  
2016 ◽  
Vol 6 (71) ◽  
pp. 67260-67270 ◽  
Author(s):  
Wen Liu ◽  
Xiao Zhao ◽  
Zhengqing Cai ◽  
Bing Han ◽  
Dongye Zhao

Aggregation and stability of multiwalled carbon nanotubes in aqueous solutions were investigated with two polysaccharide stabilizers (carboxymethyl cellulose and a water soluble starch) and a natural organic matter (leonardite humic acid).


2010 ◽  
Vol 59 (1) ◽  
pp. 99-108 ◽  
Author(s):  
M. Takács ◽  
Gy. Füleky

The Hot Water Percolation (HWP) technique for preparing soil extracts has several advantages: it is easily carried out, fast, and several parameters can be measured from the same solution. The object of this study was to examine the possible use of HWP extracts for the characterization of soil organic matter. The HPLC-SEC chromatograms, UV-VIS and fluorescence properties of the HWP extracts were studied and the results were compared with those of the International Humic Substances Society (IHSS) Soil Humic Acid (HA), IHSS Soil Fulvic Acid (FA) and IHSS Suwannee Natural Organic Matter (NOM) standards as well as their HA counterparts isolated by traditional extraction methods from the original soil samples. The DOM of the HWP solution is probably a mixture of organic materials, which have some characteristics similar to the Soil FA fractions and NOM. The HWP extracted organic material can be studied and characterized using simple techniques, like UV-VIS and fluorescence spectroscopy.


2013 ◽  
Vol 807-809 ◽  
pp. 486-489
Author(s):  
Tong Zhou Liu ◽  
Pin Hua Rao

An investigation on the effects of humic acid (representing NOM) on TCE (a typical organic contaminant) removal by Fe0in batch settings was carried out. Inhibitory effects of humic acid on Fe0towards TCE removal were observed. At early stage of the experiments, humic acid might partition with TCE, and the adsorption or deposition of humic acid onto Fe0surface would further facilitated TCE immobilization. Once the reduction reactive sites on Fe0surfaces were covered by accumulated humic acid and the partition of TCE to humic acid became saturated, TCE removal in Fe0was observed retarded.


RSC Advances ◽  
2014 ◽  
Vol 4 (45) ◽  
pp. 23658-23665 ◽  
Author(s):  
A. Nebbioso ◽  
A. Piccolo ◽  
M. Lamshöft ◽  
M. Spiteller

Humeomics encompasses step-wise chemical fractionation and instrumental determination to fully characterize the heterogeneous molecular composition of natural organic matter.


2016 ◽  
Vol 6 (1) ◽  
pp. 43 ◽  
Author(s):  
Anthony Temidayo Bolarinwa ◽  
Adebimpe Atinuke Adepoju

Trace and Rare Earth Elements (REEs) data are used to constrain the geochemical evolution of the amphibolites from Ifewara in the Ife-Ilesha schist belt of southwestern Nigeria. The amphibolites can be grouped into banded and sheared amphibolites. Major element data show SiO2 (48.34%), Fe2O3 (11.03-17.88%), MgO (5.76-9.90%), CaO (7.76-18.6%) and TiO2 (0.44-1.77%) contents which are similar to amphibolites in other schist belts in Nigeria. The Al2O3 (2.85-15.55%) content is varied, with the higher values suggesting alkali basalt protolith. Trace and rare earth elements composition reveal Sr (160-1077ppm), Rb (0.5-22.9ppm), Ni (4.7-10.2ppm), Co (12.2-50.9 ppm) and Cr (2-7ppm). Chondrite-normalized REE patterns show that the banded amphibolites have HREE depletion and both negative and positive Eu anomalies while the sheared variety showed slight LREE enrichment with no apparent Eu anomaly. The study amphibolites plot in the Mid Oceanic Ridge Basalts (MORB) and within plate basalt fields on the Zr/Y vs Zr discriminatory diagrams. They are further classified as volcanic arc basalt and E-type MORB on the Th- Hf/3- Ta and the Zr-Nb-Y diagrams. The amphibolites precursor is considered a tholeiitic suite that suffered crustal contamination, during emplacement in a rifted crust.


Author(s):  
B. N. Abramov

The distribution of rare-earth elements (REE) in ores of gold deposits of East Transbaikalia has shown that the ore-bearing magma chambers have different depths and degrees of differentiation. The greatest degree of differentiation was within the magmatic foci (Eu/Eu* — 0,29—0,32; Rb/Sr — 0,98—1,40), which are the sources of gold-quartz-arsenopyrite ores, the magmatic sources of the gold-quartz and gold-sulfide-quartz ores (Eu/Eu* — 0,53—0,72; Rb/Sr of 0,10 to 0,54) had lesser degree of differentiation. Magma chambers that are sources for the gold-quartz-arsenopyrite ores (Eu/Sm — 0,08—0,14), were at shallower depths than those for gold-quartz and gold-sulfide-quartz ores (Eu/Sm — 0,11—0,19). The formation of gold-quartz-arsenopyrite ores took place at the magma chambers, largely enriched in volatile components, it is indicated by the existence of a significant tetrad effects in REE patterns of (T1-4 - 0,80; 1,15; 1,16).


2014 ◽  
Vol 6 (15) ◽  
pp. 6125-6132 ◽  
Author(s):  
Wenjun Li ◽  
Xindi Jin ◽  
Bingyu Gao ◽  
Changle Wang ◽  
Lianchang Zhang

Comparison between the REE data of this work and literature values by Z. S. Yu et al., Sampaio et al., Dulski et al., and Bau et al. in reference materials FER-2 (a) and FER-3 (b) using PAAS-normalized REE patterns.


Sign in / Sign up

Export Citation Format

Share Document