On the isotopic composition of leaf water in the non-steady state

2005 ◽  
Vol 32 (4) ◽  
pp. 293 ◽  
Author(s):  
Graham D. Farquhar ◽  
Lucas A. Cernusak

An expression is derived for the isotopic composition of water in leaves under conditions where the composition of water entering the leaf is not necessarily the same as that of water being transpired. The treatment is simplified and considers the average composition of the lamina and of the sites of evaporation. The concept of ‘isostorage’ is introduced as the product of leaf water content and the isotopic enrichment of leaf water above source water. It is shown that the rate of increase of isostorage is minus the ‘isoflux’ through the stomata, with the latter expressed as the product of the transpiration flux and the enrichment of the transpired water beyond source water. The approach of the isostorage to the steady state depends on the deviation of the isotopic enrichment of water at the evaporating sites from the steady value, and on the gross (one way) diffusive flux out of the leaf. To achieve model closure, it is assumed that the relationship between leaf water enrichment and that at the sites of evaporation depends on the radial Péclet number in the same manner as in the steady state. The equations have an analytical solution, and we also show how to calculate the results simply using a commonly available computer tool. The form of the equations emphasises that the one-way fluxes of water into and out of the stomata must sometimes be considered separately, rather than as a net outward flux. In this narrow sense we come to the interesting conclusion that more water usually enters the leaf from the air than from the roots.

1978 ◽  
Vol 56 (13) ◽  
pp. 1537-1539 ◽  
Author(s):  
I. F. Ike ◽  
G. W. Thurtell ◽  
K. R. Stevenson

The relationship between leaf water potential (ψL) and transpiration rate (T) was investigated using indoor-grown cassava plants (Manihot esculenta Crantz cv. Llanera). Leaf water potentials were measured with in situ dew-point hygrometer and transpiration rates by gas exchange analysis technique.Regression analyses of the data showed that T was consistently linearly related to ψL (r2 = 0.94). This implies that the plant resistance to flow was constant and hence that an Ohm's Law analog is valid for the transpiration range studied. Extrapolated values of leaf water potential at zero transpiration were close to the osmotic potential of the nutrient solution. Calculated resistance values (slope of regression line for individual plants) varied between 2.90 and 3.05 bars dm2 h g−1 (1 bar = 100 kPa).


2019 ◽  
Author(s):  
Johannes Hepp ◽  
Imke K. Schäfer ◽  
Verena Lanny ◽  
Jörg Franke ◽  
Marcel Bliedtner ◽  
...  

Abstract. Molecular fossils, like bacterial branched glycerol dialkyl glycerol tetraethers (brGDGTs), and the stable isotopic composition of biomarkers, such as δ2H of leaf wax-derived n-alkanes (δ2Hn-alkane) or δ18O of hemicellulose-derived sugars (δ18Osugar) are increasingly used for the reconstruction of past climate and environmental conditions. Plant-derived δ2Hn-alkane and δ18Osugar values record the isotopic composition of plant source water (δ2H/δ18Osource-water), which usually reflects mean annual precipitation (δ2H/δ18Oprecipiation), modulated by evapotranspirative leaf water enrichment and biosynthetic fractionation. Accuracy and precision of respective proxies should be ideally evaluated at a regional scale. For this study, we analysed topsoils below coniferous and deciduous forests, as well as grassland soils along a Central European transect in order to investigate the variability and robustness of various proxies, and to identify effects related to vegetation. Soil pH-values derived from brGDGTs correlate reasonably well with measured soil pH-values, but systematically overestimate them (ΔpH = 0.6 ± 0.6). The branched vs. isoprenoid tetraether index (BIT) can give some indication whether the pH reconstruction is reliable. Temperatures derived from brGDGTs overestimate mean annual air temperatures slightly (∆TMA = 0.5 °C ± 2.4). Apparent isotopic fractionation (εn-alkane/precipitation and εsugar/precipitation) is lower for grassland sites than for forest sites due to "signal damping", i.e. grass biomarkers do not record the full evapotranspirative leaf water enrichment. Coupling δ2Hn-alkane with δ18Osugar allows to reconstruct the stable isotopic composition of the source water more accurately than without the coupled approach (Δδ2H = ~-21 ‰ ± 22 and Δδ18O = ~-2.9 ‰ ± 2.8). Similarly, relative humidity during daytime and vegetation period (RHMDV) can be reconstructed using the coupled isotope approach (ΔRHMDV = ~-17 ± 12). Especially for coniferous sites, reconstructed RHMDV values as well as source water isotope composition underestimate the measured values. This can be likely explained by understory grass vegetation at the coniferous sites contributing significantly to the n-alkane pool but only marginally to the sugar pool in the topsoil. The large uncertainty likely reflect the fact that biosynthetic fractionation is not constant, as well as microclimate variability. Overall, GDGTs and the coupled δ2Hn-alkane-δ18Osugar approach have great potential for more quantitative paleoclimate reconstructions.


2019 ◽  
Author(s):  
Johannes Hepp ◽  
Bruno Glaser ◽  
Dieter Juchelka ◽  
Christoph Mayr ◽  
Kazimierz Rozanski ◽  
...  

Abstract. The hydrogen isotopic composition of leaf wax-derived biomarkers, e.g. long chain n-alkanes (δ2Hn-alkane), is widely applied in paleoclimatology research. However, a direct reconstruction of the isotopic composition of paleoprecipitation based on δ2Hn-alkane alone can be challenging due to the overprint of the source water isotopic signal by leaf-water enrichment. The coupling of δ2Hn-alkane with δ18O of hemicellulose-derived sugars (δ18Osugar) has the potential to disentangle this effect and additionally allow relative humidity reconstructions. Here, we present δ2Hn-alkane as well as δ18Osugar results obtained from leaves of the plant species Eucalyptus globulus, Vicia faba var. minor and Brassica oleracea var. medullosa, which were grown under controlled conditions. We addressed the questions (i) do δ2Hn-alkane and δ18Osugar values allow precise reconstructions of leaf water isotope composition, (ii) how accurately does the reconstructed leaf-water-isotope composition enables relative humidity (RH) reconstruction in which the plants grew, and (iii) does the coupling of δ2Hn-alkane and δ18Osugar enable a robust source water calculation? For all investigated species, the alkane n-C29 was most abundant and therefore used for compound-specific δ2H measurements. For Vicia faba, additionally the δ2H values of n-C31 could be evaluated robustly. With regard to hemicellulose-derived monosaccharides, arabinose and xylose were most abundant and their δ18O values were therefore used to calculate weighted mean leaf δ18Osugar values. Both δ2Hn-alkane and δ18Osugar yielded significant correlations with δ2Hleaf-water and δ18Oleaf-water, respectively (r2 = 0.45 and 0.85, respectively; p 


2014 ◽  
Vol 11 (6) ◽  
pp. 7823-7852 ◽  
Author(s):  
M. Zech ◽  
R. Zech ◽  
K. Rozanski ◽  
A. Hemp ◽  
G. Gleixner ◽  
...  

Abstract. During the last decade compound-specific deuterium (δ2H) analysis of plant leaf wax-derived n-alkanes has become a promising and popular tool in paleoclimate research. This is based on the widely accepted assumption that n-alkanes in soils and sediments generally reflect δ2H of precipitation (δ2Hprec). Recently, several authors suggested that δ2H of n-alkanes (δ2H,sub>n-alkanes) can also be used as proxy in paleoaltimetry studies. Here we present results from a δ2H transect study (~1500 to 4000 m a.s.l.) carried out on precipitation and soil samples taken from the humid southern slopes of Mt. Kilimanjaro. Contrary to earlier suggestions, a distinct altitude effect in δ2Hprec is present above ~2000 m a.s.l., i.e. δ2Hprec values become more negative with increasing altitude. The compound-specific δ2H values of nC27 and nC29 do not confirm this altitudinal trend, but rather become more positive both in the O-layers (organic layers) and the Ah-horizons (mineral topsoils). Although our δ2Hn-alkane results are in agreement with previously published results from the southern slopes of Mt. Kilimanjaro (Peterse et al., 2009, BG, 6, 2799–2807), a major re-interpretation is required given that the δ2Hn-alkane results do not reflect the δ2Hprec results. The theoretical framework for this re-interpretation is based on the evaporative isotopic enrichment of leaf water associated with transpiration process. Modelling results show that relative humidity, decreasing considerably along the southern slopes of Mt. Kilimanjaro (from 78% at ~ 2000 m a.s.l. to 51% at 4000 m a.s.l.), strongly controls δ2Hleaf water. The modelled δ2H leaf water enrichment along the altitudinal transect matches well the measured 2H leaf water enrichment as assessed by using the δ2Hprec and δ2Hn-alkane results and biosynthetic fractionation during n-alkane biosynthesis in leaves. Given that our results clearly demonstrate that n-alkanes in soils do not simply reflect δ2Hprec but rather δ2Hleaf water, we conclude that care has to be taken not to over-interpret δ2Hn-alkane records from soils and sediments when reconstructing δ2H of paleoprecipitation. Both in paleoaltimetry and in paleoclimate studies changes in relative humidity and consequently in δ2Hn-alkane values can completely mask altitudinally or climatically-controlled changes in δ2Hprec.


2020 ◽  
Author(s):  
Johannes Hepp ◽  
Christoph Mayr ◽  
Kazimierz Rozanski ◽  
Imke Kathrin Schäfer ◽  
Mario Tuthorn ◽  
...  

Abstract. The hydrogen isotopic composition of leaf wax-derived biomarkers, e.g. long chain n-alkanes (δ2Hn-alkane), is widely applied in paleoclimatology research. However, a direct reconstruction of the isotopic composition of source water based on δ2Hn-alkane alone can be challenging due to the alteration of the soil water isotopic signal by leaf-water heavy-isotope enrichment. The coupling of δ2Hn-alkane with δ18O of hemicellulose-derived sugars (δ18Osugar) has the potential to disentangle this effect and additionally to allow relative humidity reconstructions. Here, we present δ2Hn-alkane as well as δ18Osugar results obtained from leaves of the plant species Eucalyptus globulus, Vicia faba var. minor and Brassica oleracea var. medullosa, which grew under controlled conditions. We addressed the questions (i) do δ2Hn-alkane and δ18Osugar values allow precise reconstructions of leaf water isotope composition, (ii) how accurately does the reconstructed leaf-water-isotope composition enables relative humidity (RH) reconstruction in which the plants grew, and (iii) does the coupling of δ2Hn-alkane and δ18Osugar enable a robust source water calculation? For all investigated species, the alkane n-C29 was most abundant and therefore used for compound-specific δ2H measurements. For Vicia faba, additionally the δ2H values of n-C31 could be evaluated robustly. With regard to hemicellulose-derived monosaccharides, arabinose and xylose were most abundant and their δ18O values were therefore used to calculate weighted mean leaf δ18Osugar values. Both δ2Hn-alkane and δ18Osugar yielded significant correlations with δ2Hleaf-water and δ18Oleaf-water, respectively (r2 = 0.45 and 0.85, respectively; p 


2020 ◽  
Vol 17 (3) ◽  
pp. 741-756 ◽  
Author(s):  
Johannes Hepp ◽  
Imke Kathrin Schäfer ◽  
Verena Lanny ◽  
Jörg Franke ◽  
Marcel Bliedtner ◽  
...  

Abstract. Molecular fossils, like bacterial branched glycerol dialkyl glycerol tetraethers (brGDGTs), and the stable isotopic composition of biomarkers, such as δ2H of leaf wax-derived n-alkanes (δ2Hn-alkane) or δ18O of hemicellulose-derived sugars (δ18Osugar), are increasingly used for the reconstruction of past climate and environmental conditions. Plant-derived δ2Hn-alkane and δ18Osugar values record the isotopic composition of plant source water (δ2Hsource-water and δ18Osource-water), which usually reflects mean annual precipitation (δ2Hprecipiation and δ18Oprecipiation), modulated by evapotranspirative leaf water enrichment and biosynthetic fractionation (εbio). Accuracy and precision of respective proxies should be ideally evaluated at a regional scale. For this study, we analysed topsoils below coniferous and deciduous forests as well as grassland soils along a central European transect in order to investigate the variability and robustness of various proxies and to identify effects related to vegetation. Soil pH values derived from brGDGTs correlate reasonably well with measured soil pH values but are systematically overestimated (ΔpH = 0.6±0.6). The branched vs. isoprenoid tetraether index (BIT) can give some indication whether the pH reconstruction is reliable. Temperatures derived from brGDGTs overestimate mean annual air temperatures slightly (ΔTMA=0.5 ∘C ± 2.4). Apparent isotopic fractionation (εn-alkane/precipitation and εsugar∕precipitation) is lower for grassland sites than for forest sites due to signal damping; i.e. grass biomarkers do not record the full evapotranspirative leaf water enrichment. Coupling δ2Hn-alkane with δ18Osugar allows us to reconstruct the stable isotopic composition of the source water more accurately than without the coupled approach (Δδ2H = ∼-21 ‰ ± 22 ‰ and Δδ18O = ∼-2.9 ‰ ± 2.8 ‰). Similarly, relative humidity during daytime and the vegetation period (RHMDV) can be reconstructed using the coupled isotope approach (ΔRHMDV=∼-17±12). Especially for coniferous sites, reconstructed RHMDV values as well as source water isotope composition underestimate the measured values. This can likely be explained by understorey grass vegetation at the coniferous sites contributing significantly to the n-alkane pool but only marginally to the sugar pool in the topsoils. Vegetation-dependent variable signal damping and εbio (regarding 2H between n-alkanes and leaf water) along our European transect are difficult to quantify but likely contribute to the observed underestimation in the source water isotope composition and RH reconstructions. Microclimate variability could cause the rather large uncertainties. Vegetation-related effects do, by contrast, not affect the brGDGT-derived reconstructions. Overall, GDGTs and the coupled δ2Hn-alkane–δ18Osugar approach have great potential for more quantitative paleoclimate reconstructions.


Author(s):  
Jesse Schotter

The first chapter of Hieroglyphic Modernisms exposes the complex history of Western misconceptions of Egyptian writing from antiquity to the present. Hieroglyphs bridge the gap between modern technologies and the ancient past, looking forward to the rise of new media and backward to the dispersal of languages in the mythical moment of the Tower of Babel. The contradictory ways in which hieroglyphs were interpreted in the West come to shape the differing ways that modernist writers and filmmakers understood the relationship between writing, film, and other new media. On the one hand, poets like Ezra Pound and film theorists like Vachel Lindsay and Sergei Eisenstein use the visual languages of China and of Egypt as a more primal or direct alternative to written words. But Freud, Proust, and the later Eisenstein conversely emphasize the phonetic qualities of Egyptian writing, its similarity to alphabetical scripts. The chapter concludes by arguing that even avant-garde invocations of hieroglyphics depend on narrative form through an examination of Hollis Frampton’s experimental film Zorns Lemma.


Sign in / Sign up

Export Citation Format

Share Document