scholarly journals Revisiting Mt. Kilimanjaro: Do n-alkane biomarkers in soils reflect the δ<sup>2</sup>H isotopic composition of precipitation?

2014 ◽  
Vol 11 (6) ◽  
pp. 7823-7852 ◽  
Author(s):  
M. Zech ◽  
R. Zech ◽  
K. Rozanski ◽  
A. Hemp ◽  
G. Gleixner ◽  
...  

Abstract. During the last decade compound-specific deuterium (δ2H) analysis of plant leaf wax-derived n-alkanes has become a promising and popular tool in paleoclimate research. This is based on the widely accepted assumption that n-alkanes in soils and sediments generally reflect δ2H of precipitation (δ2Hprec). Recently, several authors suggested that δ2H of n-alkanes (δ2H,sub>n-alkanes) can also be used as proxy in paleoaltimetry studies. Here we present results from a δ2H transect study (~1500 to 4000 m a.s.l.) carried out on precipitation and soil samples taken from the humid southern slopes of Mt. Kilimanjaro. Contrary to earlier suggestions, a distinct altitude effect in δ2Hprec is present above ~2000 m a.s.l., i.e. δ2Hprec values become more negative with increasing altitude. The compound-specific δ2H values of nC27 and nC29 do not confirm this altitudinal trend, but rather become more positive both in the O-layers (organic layers) and the Ah-horizons (mineral topsoils). Although our δ2Hn-alkane results are in agreement with previously published results from the southern slopes of Mt. Kilimanjaro (Peterse et al., 2009, BG, 6, 2799–2807), a major re-interpretation is required given that the δ2Hn-alkane results do not reflect the δ2Hprec results. The theoretical framework for this re-interpretation is based on the evaporative isotopic enrichment of leaf water associated with transpiration process. Modelling results show that relative humidity, decreasing considerably along the southern slopes of Mt. Kilimanjaro (from 78% at ~ 2000 m a.s.l. to 51% at 4000 m a.s.l.), strongly controls δ2Hleaf water. The modelled δ2H leaf water enrichment along the altitudinal transect matches well the measured 2H leaf water enrichment as assessed by using the δ2Hprec and δ2Hn-alkane results and biosynthetic fractionation during n-alkane biosynthesis in leaves. Given that our results clearly demonstrate that n-alkanes in soils do not simply reflect δ2Hprec but rather δ2Hleaf water, we conclude that care has to be taken not to over-interpret δ2Hn-alkane records from soils and sediments when reconstructing δ2H of paleoprecipitation. Both in paleoaltimetry and in paleoclimate studies changes in relative humidity and consequently in δ2Hn-alkane values can completely mask altitudinally or climatically-controlled changes in δ2Hprec.

2019 ◽  
Author(s):  
Johannes Hepp ◽  
Bruno Glaser ◽  
Dieter Juchelka ◽  
Christoph Mayr ◽  
Kazimierz Rozanski ◽  
...  

Abstract. The hydrogen isotopic composition of leaf wax-derived biomarkers, e.g. long chain n-alkanes (δ2Hn-alkane), is widely applied in paleoclimatology research. However, a direct reconstruction of the isotopic composition of paleoprecipitation based on δ2Hn-alkane alone can be challenging due to the overprint of the source water isotopic signal by leaf-water enrichment. The coupling of δ2Hn-alkane with δ18O of hemicellulose-derived sugars (δ18Osugar) has the potential to disentangle this effect and additionally allow relative humidity reconstructions. Here, we present δ2Hn-alkane as well as δ18Osugar results obtained from leaves of the plant species Eucalyptus globulus, Vicia faba var. minor and Brassica oleracea var. medullosa, which were grown under controlled conditions. We addressed the questions (i) do δ2Hn-alkane and δ18Osugar values allow precise reconstructions of leaf water isotope composition, (ii) how accurately does the reconstructed leaf-water-isotope composition enables relative humidity (RH) reconstruction in which the plants grew, and (iii) does the coupling of δ2Hn-alkane and δ18Osugar enable a robust source water calculation? For all investigated species, the alkane n-C29 was most abundant and therefore used for compound-specific δ2H measurements. For Vicia faba, additionally the δ2H values of n-C31 could be evaluated robustly. With regard to hemicellulose-derived monosaccharides, arabinose and xylose were most abundant and their δ18O values were therefore used to calculate weighted mean leaf δ18Osugar values. Both δ2Hn-alkane and δ18Osugar yielded significant correlations with δ2Hleaf-water and δ18Oleaf-water, respectively (r2 = 0.45 and 0.85, respectively; p 


2020 ◽  
Author(s):  
Johannes Hepp ◽  
Christoph Mayr ◽  
Kazimierz Rozanski ◽  
Imke Kathrin Schäfer ◽  
Mario Tuthorn ◽  
...  

Abstract. The hydrogen isotopic composition of leaf wax-derived biomarkers, e.g. long chain n-alkanes (δ2Hn-alkane), is widely applied in paleoclimatology research. However, a direct reconstruction of the isotopic composition of source water based on δ2Hn-alkane alone can be challenging due to the alteration of the soil water isotopic signal by leaf-water heavy-isotope enrichment. The coupling of δ2Hn-alkane with δ18O of hemicellulose-derived sugars (δ18Osugar) has the potential to disentangle this effect and additionally to allow relative humidity reconstructions. Here, we present δ2Hn-alkane as well as δ18Osugar results obtained from leaves of the plant species Eucalyptus globulus, Vicia faba var. minor and Brassica oleracea var. medullosa, which grew under controlled conditions. We addressed the questions (i) do δ2Hn-alkane and δ18Osugar values allow precise reconstructions of leaf water isotope composition, (ii) how accurately does the reconstructed leaf-water-isotope composition enables relative humidity (RH) reconstruction in which the plants grew, and (iii) does the coupling of δ2Hn-alkane and δ18Osugar enable a robust source water calculation? For all investigated species, the alkane n-C29 was most abundant and therefore used for compound-specific δ2H measurements. For Vicia faba, additionally the δ2H values of n-C31 could be evaluated robustly. With regard to hemicellulose-derived monosaccharides, arabinose and xylose were most abundant and their δ18O values were therefore used to calculate weighted mean leaf δ18Osugar values. Both δ2Hn-alkane and δ18Osugar yielded significant correlations with δ2Hleaf-water and δ18Oleaf-water, respectively (r2 = 0.45 and 0.85, respectively; p 


2021 ◽  
Vol 18 (19) ◽  
pp. 5363-5380
Author(s):  
Johannes Hepp ◽  
Christoph Mayr ◽  
Kazimierz Rozanski ◽  
Imke Kathrin Schäfer ◽  
Mario Tuthorn ◽  
...  

Abstract. The hydrogen isotope composition of leaf-wax-derived biomarkers, e.g., long-chain n-alkanes (δ2Hn-alkane), is widely applied in paleoclimate. However, a direct reconstruction of the isotope composition of source water based on δ2Hn-alkane alone is challenging due to the enrichment of heavy isotopes during evaporation. The coupling of δ2Hn-alkane with δ18O of hemicellulose-derived sugars (δ18Osugar) has the potential to disentangle this limitation and additionally to allow relative humidity reconstructions. Here, we present δ2Hn-alkane as well as δ18Osugar results obtained from leaves of Eucalyptus globulus, Vicia faba, and Brassica oleracea, which grew under controlled conditions. We addressed the questions of (i) whether δ2Hn-alkane and δ18Osugar values allow reconstructions of leaf water isotope composition, (ii) how accurately the reconstructed leaf water isotope composition enables relative humidity (RH) reconstruction, and (iii) whether the coupling of δ2Hn-alkane and δ18Osugar enables a robust source water calculation. For all investigated species, the n-alkane n-C29 was most abundant and therefore used for compound-specific δ2H measurements. For Vicia faba, additionally the δ2H values of n-C31 could be evaluated robustly. Regarding hemicellulose-derived monosaccharides, arabinose and xylose were most abundant, and their δ18O values were therefore used to calculate weighted mean leaf δ18Osugar values. Both δ2Hn-alkane and δ18Osugar yielded significant correlations with δ2Hleaf water and δ18Oleaf water, respectively (r2=0.45 and 0.85, respectively; p<0.001, n=24). Mean fractionation factors between biomarkers and leaf water were found to be −156 ‰ (ranging from −133 ‰ to −192 ‰) for εn-alkane/leaf water and +27.3 ‰ (ranging from +23.0 ‰ to 32.3 ‰) for εsugar/leaf water, respectively. Modeled RHair values from a Craig–Gordon model using measured Tair, δ2Hleaf water and δ18Oleaf water as input correlate highly significantly with modeled RHair values (R2=0.84, p<0.001, RMSE = 6 %). When coupling δ2Hn-alkane and δ18Osugar values, the correlation of modeled RHair values with measured RHair values is weaker but still highly significant, with R2=0.54 (p<0.001, RMSE = 10 %). Finally, the reconstructed source water isotope composition (δ2Hs and δ18Os) as calculated from our coupled approach matches the source water in the climate chamber experiment (δ2Htank water and δ18Otank water). This highlights the great potential of the coupled δ2Hn-alkane–δ18Osugar paleohygrometer approach for paleoclimate and relative humidity reconstructions.


2015 ◽  
Vol 12 (12) ◽  
pp. 3913-3924 ◽  
Author(s):  
M. Tuthorn ◽  
R. Zech ◽  
M. Ruppenthal ◽  
Y. Oelmann ◽  
A. Kahmen ◽  
...  

Abstract. The hydrogen isotopic composition (δ2H) of leaf waxes, especially of n-alkanes (δ2Hn-alkanes), is increasingly used for paleohydrological and paleoclimate reconstructions. However, it is challenging to disentangle past changes in the isotopic composition of precipitation and changes in evapotranspirative enrichment of leaf water, which are both recorded in leaf wax δ2H values. In order to overcome this limitation, Zech M. et al. (2013) proposed a coupled δ2Hn-alkanes–δ18Osugar biomarker approach. This coupled approach allows for calculating (i) biomarker-based "reconstructed" δ2Hδ18O values of leaf water (δ2Hδ18Oleaf water), (ii) biomarker-based reconstructed deuterium excess (d-excess) of leaf water, which mainly reflects evapotranspirative enrichment and which can be used to reconstruct relative air humidity (RH) and (iii) biomarker-based reconstructed δ2Hδ18Oprecipitation values. Here we present a climate transect validation study by coupling new results from δ2H analyses of n-alkanes and fatty acids in topsoils along a climate transect in Argentina with previously measured δ18O results obtained for plant-derived sugars. Accordingly, both the reconstructed RH and δ2Hδ18Oprecipitation values correlate highly significantly with actual RH and δ2Hδ18Oprecipitation values. We conclude that compared to single δ2Hn-alkane or δ18Osugar records, the proposed coupled δ2Hn-alkane–δ18Osugar biomarker approach will allow more robust δ2Hδ18Oprecipitation reconstructions in future paleoclimate research. Additionally, the proposed coupled δ2Hn-alkane–δ18Osugar biomarker approach allows for the establishment of a "paleohygrometer", more specifically, the reconstruction of mean summer daytime RH changes/history.


2017 ◽  
Vol 206 ◽  
pp. 1-17 ◽  
Author(s):  
Mong Sin Wu ◽  
Sarah J. Feakins ◽  
Roberta E. Martin ◽  
Alexander Shenkin ◽  
Lisa Patrick Bentley ◽  
...  

2005 ◽  
Vol 32 (4) ◽  
pp. 293 ◽  
Author(s):  
Graham D. Farquhar ◽  
Lucas A. Cernusak

An expression is derived for the isotopic composition of water in leaves under conditions where the composition of water entering the leaf is not necessarily the same as that of water being transpired. The treatment is simplified and considers the average composition of the lamina and of the sites of evaporation. The concept of ‘isostorage’ is introduced as the product of leaf water content and the isotopic enrichment of leaf water above source water. It is shown that the rate of increase of isostorage is minus the ‘isoflux’ through the stomata, with the latter expressed as the product of the transpiration flux and the enrichment of the transpired water beyond source water. The approach of the isostorage to the steady state depends on the deviation of the isotopic enrichment of water at the evaporating sites from the steady value, and on the gross (one way) diffusive flux out of the leaf. To achieve model closure, it is assumed that the relationship between leaf water enrichment and that at the sites of evaporation depends on the radial Péclet number in the same manner as in the steady state. The equations have an analytical solution, and we also show how to calculate the results simply using a commonly available computer tool. The form of the equations emphasises that the one-way fluxes of water into and out of the stomata must sometimes be considered separately, rather than as a net outward flux. In this narrow sense we come to the interesting conclusion that more water usually enters the leaf from the air than from the roots.


2015 ◽  
Vol 12 (3) ◽  
pp. 2459-2489
Author(s):  
M. Tuthorn ◽  
R. Zech ◽  
M. Ruppenthal ◽  
Y. Oelmann ◽  
A. Kahmen ◽  
...  

Abstract. The δ2H isotopic composition of leaf waxes is used increasingly for paleohydrological and -climate reconstructions. However, it is challenging to disentangle past changes in the isotopic composition of precipitation and changes in evapotranspirative enrichment of leaf water. We analyzed δ2H on n-alkanes and fatty acids in topsoils along a climate transect in Argentina, for which we had previously measured δ18O on plant-derived sugars. Our results indicate that leaf wax biomarker δ2H values (δ2Hlipids) primarily reflect δ2Hsource water (precipitation), but are modulated by evapotranspirative enrichment. A mechanistic model is able to produce the main trends in δ2Hlipids along the transect, but seems to slightly underestimate evapotranspirative enrichment in arid regions and overestimate it in grass-dominated ecosystems. Furthermore, the (i) coupling of the δ2Hlipid and δ18Osugar biomarker results and (ii) application of biosynthetic fractionation factors allows calculating the δ2H-δ18O isotopic composition of leaf water along the transect. This also yields the deuterium excess (d excess) of leaf water, which mainly reflects evapotranspirative enrichment, and can be used to model relative air humidity (RH). The high correlation of modeled (reconstructed based on biomarker results) and measured RH, as well as the good agreement between modeled and actual δ2H and δ18O of precipitation along the transect lends support to the coupled δ2Hlipid and δ18Osugar biomarker approach for future paleoclimate research.


2021 ◽  
Author(s):  
Bruk Lemma ◽  
Lucas Bittner ◽  
Bruno Glaser ◽  
Seifu Kebede ◽  
Sileshi Nemomissa ◽  
...  

AbstractThe hydrogen isotopic composition of leaf wax–derived n-alkane (δ2Hn-alkane) and oxygen isotopic composition of hemicellulose–derived sugar (δ18Osugar) biomarkers are valuable proxies for paleoclimate reconstructions. Here, we present a calibration study along the Bale Mountains in Ethiopia to evaluate how accurately and precisely the isotopic composition of precipitation is imprinted in these biomarkers. n-Alkanes and sugars were extracted from the leaf and topsoil samples and compound–specific δ2Hn-alkane and δ18Osugar values were measured using a gas chromatograph–thermal conversion–isotope ratio mass spectrometer (GC–TC–IRMS). The weighted mean δ2Hn-alkane and δ18Osugar values range from − 186 to − 89‰ and from + 27 to + 46‰, respectively. Degradation and root inputs did not appear to alter the isotopic composition of the biomarkers in the soil samples analyzed. Yet, the δ2Hn-alkane values show a statistically significant species dependence and δ18Osugar yielded the same species–dependent trends. The reconstructed leaf water of Erica arborea and Erica trimera is 2H– and 18O–enriched by + 55 ± 5 and + 9 ± 1‰, respectively, compared to precipitation. By contrast, Festuca abyssinica reveals the most negative δ2Hn-alkane and least positive δ18Osugar values. This can be attributed to “signal–dampening” caused by basal grass leaf growth. The intermediate values for Alchemilla haumannii and Helichrysum splendidum can be likely explained with plant physiological differences or microclimatic conditions affecting relative humidity (RH) and thus RH–dependent leaf water isotope enrichment. While the actual RH values range from 69 to 82% (x̄ = 80 ± 3.4%), the reconstructed RH values based on a recently suggested coupled δ2Hn-alkane –δ18Osugar (paleo–) hygrometer approach yielded a mean of 78 ± 21%. Our findings corroborate (i) that vegetation changes, particularly in terms of grass versus non–grassy vegetation, need to be considered in paleoclimate studies based on δ2Hn-alkane and δ18Osugar records and (ii) that the coupled δ2Hn-alkane –δ18Osugar (paleo–) hygrometer approach holds great potential for deriving additional paleoclimatic information compared to single isotope approaches.


MAUSAM ◽  
2022 ◽  
Vol 73 (1) ◽  
pp. 161-172
Author(s):  
ANANTA VASHISTH ◽  
DEBASISH ROY ◽  
AVINASH GOYAL ◽  
P. KRISHNAN

Field experiments were conducted on the research farm of IARI, New Delhi during Rabi 2016-17 and 2017-18. Three varieties of wheat (PBW-723, HD-2967 and HD-3086) were sown on three different dates for generating different weather condition during various phenological stages of crop. Results showed that during early crop growth stages soil moisture had higher value and soil temperature had lower value and with progress of crop growth stage, the moisture in the upper layer decreased and soil temperature increased significantly as compared to the bottom layers. During tillering and jointing stage, air temperature within canopy was more and relative humidity was less while during flowering and grain filling stage, air temperature within canopy was less and relative humidity was more in timely sown crop as compared to late and very late sown crop. Radiation use efficiency and relative leaf water content had significantly higher value while leaf water potential had lower value in timely sown crop followed by late and very late sown crop. Yield had higher value in HD-3086 followed by HD-2967 and PBW-723 in all weather conditions. Canopy air temperature difference had positive value in very late sown crop particularly during flowering and grain-filling stages. This reflects in the yield. Yield was more in timely sown crop as compared to late and very late sown crop.  


Sign in / Sign up

Export Citation Format

Share Document