Photosynthesis - stomatal conductance model LEAFC3-N: specification for barley, generalised nitrogen relations, and aspects of model application

2008 ◽  
Vol 35 (10) ◽  
pp. 797 ◽  
Author(s):  
Johannes Müller ◽  
Henning Braune ◽  
Wulf Diepenbrock

We discuss a generalised formulation of the nitrogen-sensitive photosynthesis−stomatal conductance model LEAFC3-N to be used as a submodel of functional–structural plant models (FSPMs) or traditional crop growth models for C3-crops. Based on a parameterisation study for barley, we demonstrate that the large variation of characteristics related to potential leaf photosynthesis and stomatal conductance, along with different factors, can be accounted for by introducing functions that relate parameter values to nitrogen contents. These relationships follow the same pattern for different C3 crops, and their parameters are in close range. The accuracy of the parameters and the minimum simulation time step required for reliable predictions of the integrated diurnal carbon gain (IDC) is assessed. For IDC predictions with an accuracy of about ±5%, the accuracy of the slope of the relationship between maximum carboxylation rate and leaf nitrogen content should be of similar order. For other key model parameters, an error of ±20% or even greater may be tolerated. A time step of 1–2 h will be sufficient to predict IDC with an accuracy of about ±5%.

2005 ◽  
Vol 2 (2) ◽  
pp. 333-397 ◽  
Author(s):  
E. Simon ◽  
F. X. Meixner ◽  
L. Ganzeveld ◽  
J. Kesselmeier

Abstract. Detailed one-dimensional multilayer biosphere-atmosphere models, also referred to as CANVEG models, are used for more than a decade to describe coupled water-carbon exchange between the terrestrial vegetation and the lower atmosphere. Within the present study, a modified CANVEG scheme is described. A generic parameterization and characterization of biophysical properties of Amazon rain forest canopies is inferred using available field measurements of canopy structure, in-canopy profiles of horizontal wind speed and radiation, canopy albedo, soil heat flux and soil respiration, photosynthetic capacity and leaf nitrogen as well as leaf level enclosure measurements made on sunlit and shaded branches of several Amazonian tree species during the wet and dry season. The sensitivity of calculated canopy energy and CO2 fluxes to the uncertainty of individual parameter values is assessed. In the companion paper, the predicted seasonal exchange of energy, CO2, ozone and isoprene is compared to observations. A bi-modal distribution of leaf area density with a total leaf area index of 6 is inferred from several observations in Amazonia. Predicted light attenuation within the canopy agrees reasonably well with observations made at different field sites. A comparison of predicted and observed canopy albedo shows a high model sensitivity to the leaf optical parameters for near-infrared short-wave radiation (NIR). The predictions agree much better with observations when the leaf reflectance and transmission coefficients for NIR are reduced by 25–40%. Available vertical distributions of photosynthetic capacity and leaf nitrogen concentration suggest a low but significant light acclimation of the rain forest canopy that scales nearly linearly with accumulated leaf area. Evaluation of the biochemical leaf model, using the enclosure measurements, showed that recommended parameter values describing the photosynthetic light response, have to be optimized. Otherwise, predicted net assimilation is overestimated by 30–50%. Two stomatal models have been tested, which apply a well established semi-empirical relationship between stomatal conductance and net assimilation. Both models differ in the way they describe the influence of humidity on stomatal response. However, they show a very similar performance within the range of observed environmental conditions. The agreement between predicted and observed stomatal conductance rates is reasonable. In general, the leaf level data suggests seasonal physiological changes, which can be reproduced reasonably well by assuming increased stomatal conductance rates during the wet season, and decreased assimilation rates during the dry season. The sensitivity of the predicted canopy fluxes of energy and CO2 to the parameterization of canopy structure, the leaf optical parameters, and the scaling of photosynthetic parameters is relatively low (1–12%), with respect to parameter uncertainty. In contrast, modifying leaf model parameters within their uncertainty range results in much larger changes of the predicted canopy net fluxes (5–35%).


2005 ◽  
Vol 2 (3) ◽  
pp. 231-253 ◽  
Author(s):  
E. Simon ◽  
F. X. Meixner ◽  
L. Ganzeveld ◽  
J. Kesselmeier

Abstract. Detailed one-dimensional multilayer biosphere-atmosphere models, also referred to as CANVEG models, are used for more than a decade to describe coupled water-carbon exchange between the terrestrial vegetation and the lower atmosphere. Within the present study, a modified CANVEG scheme is described. A generic parameterization and characterization of biophysical properties of Amazon rain forest canopies is inferred using available field measurements of canopy structure, in-canopy profiles of horizontal wind speed and radiation, canopy albedo, soil heat flux and soil respiration, photosynthetic capacity and leaf nitrogen as well as leaf level enclosure measurements made on sunlit and shaded branches of several Amazonian tree species during the wet and dry season. The sensitivity of calculated canopy energy and CO2 fluxes to the uncertainty of individual parameter values is assessed. In the companion paper, the predicted seasonal exchange of energy, CO2, ozone and isoprene is compared to observations. A bi-modal distribution of leaf area density with a total leaf area index of 6 is inferred from several observations in Amazonia. Predicted light attenuation within the canopy agrees reasonably well with observations made at different field sites. A comparison of predicted and observed canopy albedo shows a high model sensitivity to the leaf optical parameters for near-infrared short-wave radiation (NIR). The predictions agree much better with observations when the leaf reflectance and transmission coefficients for NIR are reduced by 25–40%. Available vertical distributions of photosynthetic capacity and leaf nitrogen concentration suggest a low but significant light acclimation of the rain forest canopy that scales nearly linearly with accumulated leaf area. Evaluation of the biochemical leaf model, using the enclosure measurements, showed that recommended parameter values describing the photosynthetic light response, have to be optimized. Otherwise, predicted net assimilation is overestimated by 30–50%. Two stomatal models have been tested, which apply a well established semi-empirical relationship between stomatal conductance and net assimilation. Both models differ in the way they describe the influence of humidity on stomatal response. However, they show a very similar performance within the range of observed environmental conditions. The agreement between predicted and observed stomatal conductance rates is reasonable. In general, the leaf level data suggests seasonal physiological changes, which can be reproduced reasonably well by assuming increased stomatal conductance rates during the wet season, and decreased assimilation rates during the dry season. The sensitivity of the predicted canopy fluxes of energy and CO2 to the parameterization of canopy structure, the leaf optical parameters, and the scaling of photosynthetic parameters is relatively low (1–12%), with respect to parameter uncertainty. In contrast, modifying leaf model parameters within their uncertainty range results in much larger changes of the predicted canopy net fluxes (5–35%).


2019 ◽  
Vol 39 (10) ◽  
pp. 1725-1735 ◽  
Author(s):  
Mayumi Y Ogasa ◽  
Haruhiko Taneda ◽  
Hiroki Ooeda ◽  
Akihiro Ohtsuka ◽  
Emiko Maruta

Abstract Xylem embolism induced by winter drought is a serious dysfunction in evergreen conifers growing at wind-exposed sites in the mountains. Some coniferous species can recover from winter embolism. The aim of this study was to determine whether wind direction influences embolism formation and/or repair dynamics on short windward and long leeward branches of asymmetrical `flagged' crowns. We analyzed the effect of branch orientation on percentage loss of xylem conductive area (PLC), leaf functional traits and the xylem:leaf area ratio for subalpine, wind-exposed flagged-crown Abies veitchii trees in the northern Yatsugatake Mountains of central Japan. In late winter, the shoot water potential was below −2.5 MPa, and the PLC exceeded 80% in 2-year-old branches, independent of branch orientation within a flagged crown. Both of these parameters almost fully recovered by summer. At branch internodes 4 years of age and older, seasonal changes in PLC were not found in either windward or leeward branches, but the PLC was higher in less leafy windward branches. The leaf nitrogen content and water-use efficiency of mature leaves were comparable between windward branches and leafy leeward branches. The ratio of xylem conductive area to total leaf area was the same for windward and leeward branches. These results indicate that the repair of winter xylem embolism allows leaf physiological functions to be maintained under sufficient leaf water supply, even on winter-wind-exposed branches. This permits substantial photosynthetic carbon gain during the following growing season on both windward and leeward branches. Thus, xylem recovery from winter embolism is a key trait for the survival of harsh winters and to support productivity on the individual level in flagged-crown A. veitchii trees.


2012 ◽  
Vol 13 (1) ◽  
pp. 239-254 ◽  
Author(s):  
Shusen Wang

Abstract The impact of water stress on plant stomatal conductance (g) has been widely studied but with little consensus as to the processes governing its responses. The photosynthesis-driven stomatal conductance models usually employ constant model parameters and attribute the decrease of g from water stress to the reduction of leaf photosynthesis. This has been challenged by studies showing that the model parameter values decrease when the plant is under water stress. In this study, the impact of plant water stress on the parameter values in stomatal conductance models is evaluated using the approach recently developed by S. Wang et al. and the tower flux measurements at a Canadian boreal aspen forest. Results show that the slope parameter (α) in the stomatal conductance models decreases substantially with the development of plant water stress. The magnitude of this reduction is dependent on how plant water stress is represented. Overall, the relative reduction of α from its maximum value is 28% when soil water content decreases from 0.38 to 0.18 m3 m−3, and is 38% when Bowen ratio increases from 0.25 to 3.5. Equations for α correction to account for water stress impacts are proposed. Further studies on different ecosystems are necessary to quantify the parameter variations with water stress among different climate regions and plant species.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Weihao Sun ◽  
Dongwei Wang ◽  
Ning Jin ◽  
Shusheng Xu ◽  
Haoran Bai

Leaf nitrogen content (LNC) is an important factor reflecting the growth quality of plants. We estimated the nitrogen content of apple leaves using hyperspectral wavelength analysis using the differential spectrum, differential spectrum transformation, and vegetation spectrum index with different derivative gaps. We then used the characteristic wavelengths extracted via the correlation coefficient method as the input vectors to the gradient boosting decision tree (GBDT) model for analysis and performed cross-validation to optimize the inversion model parameters. We analyzed the results with different input variables and loss functions and compared the GBDT model with other mainstream algorithm models. The results show that the R2 value of the optimized GBDT inversion model is higher than that obtained using the random forest (RF) and support vector regression (SVR) models. Thus, the GBDT model is accurate, and the characteristic wavelength analysis is helpful for the tasks of real-time monitoring and detection of apple tree health.


2019 ◽  
Vol 14 (1) ◽  
pp. 141-154
Author(s):  
Nina Chen ◽  
Anzhi Wang ◽  
Juan An ◽  
Yushu Zhang ◽  
Ruipeng Ji ◽  
...  

Abstract To incorporate canopy vertical structure in a process-based model over a temperate meadow, a multilayered model estimated canopy carbon flux (Fc) and water flux (LE) was applied by comparing with eddy covariance measurements in Inner Mongolia, China. Simulations of diurnal, seasonal CO2 and H2O fluxes and model sensitivity to parameters and variables were analyzed. The results showed that the model underestimated Fc and LE by about 0.6% and 5.0%, respectively. It was able to simulate the diurnal and seasonal variation of Fc and LE and performed well during the day and in the growing season, but poorly at night and early in the growing season. Fc was more sensitive to the leaf nitrogen content distribution coefficient and maximum catalytic activity of Rubisco, whereas LE showed greater sensitivity to the stomatal conductance parameter a1, empirical coefficient of stomatal response to saturated vapor pressure difference Vpds0, and minimum stomatal conductance of CO2gsc0. The response of Fc to environmental factors was ranked as air CO2 concentration (Ca) > air temperature (Ta) > photosynthetically active radiation (PAR) > soil water content (θsm) > vapor pressure deficit (VPD) > wind speed (u0). The response of LE to environmental factors was ranked as Ta > VPD > θsm> PAR> Ca> u0. The response of LE to vegetation characteristic parameters was greater than that of Fc.


1988 ◽  
Vol 15 (2) ◽  
pp. 63 ◽  
Author(s):  
TJ Givnish

Whole-plant energy capture depends not only on the photosynthetic response of individual leaves, but also on their integration into an effective canopy, and on the costs of producing and maintaining their photosynthetic capacity. This paper explores adaptation to irradiance level in this context, focusing on traits whose significance would be elusive if considered in terms of their impact at the leaf level alone. I review traditional approaches used to demonstrate or suggest adaptation to irradiance level, and outline three energetic tradeoffs likely to shape such adaptation, involving the economics of gas exchange, support, and biotic interactions. Recent models using these tradeoffs to account for trends in leaf nitrogen content, stornatal conductance, phyllotaxis, and defensive allocations in sun v. shade are evaluated. A re-evaluation of the classic study of acclimation of the photosynthetic light response in Atriplex, crucial to interpreting adaptation to irradiance in many traits, shows that it does not completely support the central dogma of adaptation to sun v. shade unless the results are analysed in terms of whole-plant energy capture. Calculations for Liriodendron show that the traditional light compensation point has little meaning for net carbon gain, and that the effective compensation point is profoundly influenced by the costs of night leaf respiration, leaf construction, and the construction of associated support and root tissue. The costs of support tissue are especially important, raising the effective compensation point by 140 �mol m-2 s-1 in trees 1 m tall, and by nearly 1350 �mol m-2 s-1 in trees 30 m tall. Effective compensation points give maximum tree heights as a function of irradiance, and shade tolerance as a function of tree height; calculations of maximum permissible height in Liriodendron correspond roughly with the height of the tallest known individual. Finally, new models for the evolution of canopy width/height ratio in response to irradiance and coverage within a tree stratum, and for the evolution of mottled leaves as a defensive measure in understory herbs, are outlined.


1995 ◽  
Vol 43 (2) ◽  
pp. 143-161 ◽  
Author(s):  
B.A.M. Bouman

Methods for the application of crop growth models, remote sensing and their integrative use for yield forecasting and prediction are presented. First, the general principles of crop growth models are explained. When crop simulation models are used on regional scales, uncertainty and spatial variation in model parameters can result in broad bands of simulated yield. Remote sensing can be used to reduce some of this uncertainty. With optical remote sensing, standard relations between the Weighted Difference Vegetation Index and fraction ground cover and LAI were established for a number of crops. The radar backscatter of agricultural crops was found to be largely affected by canopy structure, and, for most crops, no consistent relationships with crop growth indicators were established. Two approaches are described to integrate remote sensing data with crop growth models. In the first one, measures of light interception (ground cover, LAI) estimated from optical remote sensing are used as forcing function in the models. In the second method, crop growth models are extended with remote sensing sub-models to simulate time-series of optical and radar remote sensing signals. These simulated signals are compared to measured signals, and the crop growth model is re-calibrated to match simulated with measured remote sensing data. The developed methods resulted in increased accuracy in the simulation of crop growth and yield of wheat and sugar beet in a number of case-studies.


Sign in / Sign up

Export Citation Format

Share Document