Alternative electron sinks are crucial for conferring photoprotection in field-grown cotton under water deficit during flowering and boll setting stages

2014 ◽  
Vol 41 (7) ◽  
pp. 737 ◽  
Author(s):  
Xiao-Ping Yi ◽  
Ya-Li Zhang ◽  
He-Sheng Yao ◽  
Xiang-Juan Zhang ◽  
Hong-Hai Luo ◽  
...  

To clarify the photoprotective mechanisms of cotton leaves under water deficit in the field, leaf gas exchange, chlorophyll a fluorescence as well as the corresponding physiological responses were examined in cotton (Gossypium hirsutum L.) to evaluate electron flux distribution. With increasing water deficit, net photosynthetic rate (Pn) significantly decreased, the total electron flux through PSII [Je(PSII)] gradually decreased and the fraction of electron flux required to sustain CO2 assimilation [Je(PCR)] markedly declined. Simultaneously, the ratio of quantum efficiency of PSII [Φ(PSII)] to the quantum efficiency of CO2 fixation [Φ(CO2)] increased, accompanied by an increase in the alternative electron flux (Ja). The enhanced alternative electron flux of O2-dependent Ja(O2-dependent) indicated that electrons had been transported to O2 in the Mehler-peroxide reaction (MPR) and that the remaining alternative electron flux Ja(O2-independent) had been used for nitrate reduction, as indicated by an increase in nitrate reductase (NR) and glutathinone reductase (GR) activities. In addition, mild water deficit increased the proportion of electron flux for the photorespiratory carbon oxidation [Je(PCO)]. Water deficit significantly increased surperoxide radical production rate (O2–•) and hydrogen peroxide content (H2O2), and the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), peroxidase (POD) and catalase (CAT) in cotton leaves also increased under water deficit. Therefore, the Mehler-peroxidation reaction, photorespiration and nitrate reduction helped to dissipated excess light energy, being important photoprotective mechanisms for adapting the photosynthetic apparatus to mild and moderate water deficit in cotton.

2002 ◽  
Vol 29 (5) ◽  
pp. 621 ◽  
Author(s):  
Salvador Nogués ◽  
Leonor Alegre

In the Mediterranean, annual mean precipitation has continuously decreased over the last three years (by ca 36% in Barcelona), and the decrease has been dramatic during the summer (by ca 78 and 64% during July and August, respectively). The impact of increased drought on the photosynthetic capacity of Mediterranean vegetation is currently unknown. In this study, two native Mediterranean plants [rosemary (Rosmarinus officinalis L.) and lavender (Lavandula stoechas L.)] were grown outdoors and subjected to two water regimes (50 mm month–1 during the summer, or no supplementary water at all). Rosemary and lavender plants watered with 50 mm month–1 during the summer had higher relative leaf water content and water potential than non-watered plants. Changes in water status were accompanied by large decreases in parameters of gas exchange [i.e. the light-saturated rate of CO2 assimilation, the maximum velocity of ribulose-1,5-bisphosphate (RuBP) carboxylation by Rubisco and the capacity for RuBP] and of modulated chlorophyll fluorescence (i.e. the relative quantum efficiency of PSII photochemistry and the efficiency of energy capture by open PSII reaction centres) during the summer, but no differences were found in any photosynthetic parameters for leaves subjected to the two water regimes. The drought-induced decreases in the relative quantum efficiency of PSII photochemistry in rosemary and lavender plants were attributable to ‘downregulation’ of electron transport. Photodamage to PSII in the field appeared to be a later effect of drought in these plants. Photorespiration was not a major mechanism protecting the photosynthetic apparatus of these plants from photodamage in the field. After the autumn rainfall, photosynthetic capacity fully recovered. We conclude that rosemary and lavender are well adapted to drought, and that an increase in water deficit is unlikely to have a significant impact on the photosynthetic capacity of leaves.


2014 ◽  
Vol 32 (1) ◽  
pp. 207-214
Author(s):  
M.A. Silva ◽  
M.T. Arantes ◽  
R. Oliver ◽  
M.C. Brunelli

This study aimed to evaluate the tolerance of sugarcane cultivars to ratoon eradication under different glyphosate rates by means of physiological responses. Therefore, a trial was carried out in randomized complete blocks with 4 x 4 factorial design (cultivars x rates) totaling 16 treatments with four replicates. The cultivars IAC91-5155, IACSP93-3046, and IAC86-2480 and IAC87-3396 and the glyphosate rates 0 g ha-1; 1,920 g ha-1; 2,400 g ha-1; 2,880 g ha-1 were tested. The variables analyzed were percentage of tiller mortality, quantum efficiency of PSII (Fv/Fm) and SPAD index. The results showed that there are differences among sugarcane cultivars for tiller eradication and for physiological responses with glyphosate different rates. The rate of 2,880 g ha-1 was the most efficient in eliminating sugarcane tillers. The cultivars IAC86-2480, IAC87-3396 and IACSP93-3046 were the most sensitive and the IAC91-5155 tolerated, for a longer period of time, the damage to the photosynthetic apparatus of the ratoons caused by glyphosate desiccation. Due to different responses, different managements should be considered for eliminating ratoons of different cultivars.


2004 ◽  
Vol 39 (7) ◽  
pp. 615-623 ◽  
Author(s):  
Rafael Vasconcelos Ribeiro ◽  
Mauro Guida dos Santos ◽  
Gustavo Maia Souza ◽  
Eduardo Caruso Machado ◽  
Ricardo Ferraz de Oliveira ◽  
...  

Photosynthetic responses to daily environmental changes were studied in bean (Phaseolus vulgaris L.) genotypes 'Carioca', 'Ouro Negro', and Guarumbé. Light response curves of CO2 assimilation and stomatal conductance (g s) were also evaluated under controlled (optimum) environmental condition. Under this condition, CO2 assimilation of 'Carioca' was not saturated at 2,000 µmol m-2 s-1, whereas Guarumbé and 'Ouro Negro' exhibited different levels of light saturation. All genotypes showed dynamic photoinhibition and reversible increase in the minimum chlorophyll fluorescence yield under natural condition, as well as lower photosynthetic capacity when compared with optimum environmental condition. Since differences in g s were not observed between natural and controlled conditions for Guarumbé and 'Ouro Negro', the lower photosynthetic capacity of these genotypes under natural condition seems to be caused by high temperature effects on biochemical reactions, as suggested by increased alternative electron sinks. The highest g s values of 'Carioca' were observed at controlled condition, providing evidences that reduction of photosynthetic capacity at natural condition was due to low g s in addition to the high temperature effects on the photosynthetic apparatus. 'Carioca' exhibited the highest photosynthetic rates under optimum environmental condition, and was more affected by daily changes of air temperature and leaf-to-air vapor pressure difference.


2006 ◽  
Vol 18 (3) ◽  
pp. 407-411 ◽  
Author(s):  
Mauro G. dos Santos ◽  
Rafael V. Ribeiro ◽  
Marcelo G. Teixeira ◽  
Ricardo F. de Oliveira ◽  
Carlos Pimentel

Two common bean cultivars were grown in pots under greenhouse conditions. Plants were submitted to a foliar Pi spray two days before suspending irrigation, what enhanced net CO2 assimilation rate of Ouro Negro cultivar but did not change significantly the photosynthesis of Carioca cultivar under both water deficit and rehydration periods. The results revealed that a foliar Pi spray induced an up-regulation of photosynthesis in common bean under mild water deficit, with this effect being genotype-dependent.


2020 ◽  
Vol 8 (Spl-2-AABAS) ◽  
pp. S298-S302
Author(s):  
Vladimir Nikolaevich Vorob’ev ◽  
◽  
Sergei Fedorovich Kotov ◽  
Vera Vladimirovna Nikolenko ◽  
Denis Vladimirovich Tishin ◽  
...  

The current study was carried out to study the influence of light and heavy lanthanides on the physiological process of Crimean-Sagyz/ Krim-saghyz (dandelion - Taraxacum hybernum). Lanthanide belongs to the group of light or heavy; infiltration of dandelion (Crimean saghyz) seeds with light and heavy lanthanides solutions increased the germination energy by 26%. The differences in the influence of light (cerium) and heavy (lutetium) were manifested in the quantum efficiency change of the photosystem 2 (PS II). Treatment of leaves with high concentrations (100 µM) led to a decrease of Y (II), moreover, under the influence of light lanthanide, the decrease was greater by 21%. It is assumed that the effect of the used lanthanides on the dandelion photosynthetic apparatus is multidirectional. Cerium influenced the PS II antenna complex, and lutetium influenced the reaction centers. A 10-fold decrease in the concentration did not change the nature of cerium action, except that Y (II) was restored already on the second day after treatment. The effect of lutetium became noticeable only by the 8th day after treatment when Y (II) became higher than that of untreated plants. Thus, the results of the study suggested that in dandelion leaves, lanthanides with a concentration of 10 µM increased the quantum efficiency of PS II in contrast to cerium.


2019 ◽  
Vol 48 (4) ◽  
pp. 1215-1221
Author(s):  
Zikria Zafar ◽  
Fahad Rasheed ◽  
Muhammad Abdullah ◽  
Mir Md Abdus Salam ◽  
Muhammad Mohsin

A greenhouse experiment was conducted to investigate the effects of water deficit on growth and physiological parameters of Ficus benjamina and Conocarpus erectus. The results revealed that all growth parameters such as plant height, stem diameter, no. of leaves, no. of branches and chlorophyll contents significantly decreased under water deficit condition. Interestingly, although leaf, stem and total biomass production and allocation decreased significantly under water deficit, but root biomass production and allocation increased significantly. Similarly, stomatal conductance to water vapor decreased significantly and CO2 assimilation rate remained similar to control under water deficit condition. Resultantly, a significant increase in water use efficiency was evident in both species under water deficit condition. These results suggested that, in spite of a significant decrease in biomass production, young Conocarpus erectus and Ficus benjamina can tolerate water deficit which is due to sustained CO2 assimilation rate and increase in root biomass.


2020 ◽  
Vol 48 (1) ◽  
pp. 210-220 ◽  
Author(s):  
Lucas C. REIS ◽  
Silvana P.Q. SCALON ◽  
Daiane DRESCH ◽  
Andressa Caroline FORESTI ◽  
Cleberton C. SANTOS ◽  
...  

The objective of this study was to evaluate chlorophyll a fluorescence as a stress indicator in Calophyllum brasiliense Cambess seedlings grown with different concentrations of abscisic acid (ABA) under intermittent water deficit condition: daily irrigation without ABA (I); daily irrigation + 10 μM ABA (I 10); daily irrigation + 100 μM ABA (I 100); suspension of daily irrigation without ABA (SI); suspension of daily irrigation + 10 μM ABA (SI 10) and  suspension of daily irrigation + 100 μM ABA (SI 100). The intermittent water deficit reduces water status and impairs the photochemical apparatus functioning and seedling quality. The fluorescence measurements helped identify the stress condition of water deficit in the cultivation of C. brasiliense and the beneficial effect of the application of 10 μM of ABA in minimizing stress and facilitating the recovery of seedlings after re-irrigation, while maintaining the integrity and function of the photosynthetic apparatus.


1996 ◽  
Vol 36 (7) ◽  
pp. 861 ◽  
Author(s):  
H Schaper ◽  
EK Chacko ◽  
SJ Blaikie

Gas exchange, leaf water status, soil water use and nut yield of cashew trees were monitored during the reproductive phase in 2 consecutive years (1988 and 1989). Treatment 1 comprised continuous irrigation from the end of the wet season in April until harvest in October; T2, irrigation between flowering (mid June) and harvest; and T3, no irrigation. Irrigation was applied by under-tree sprinkler at 43 mm/week in 1988 and 64 mm/week in 1989. Measurement of leaf gas exchange, chlorophyll content and nut production showed that trees in T2 were as productive as those in T1 (>1.3 kg kernel/tree). In T3, water deficit caused a 4-fold reduction in leaf photosynthesis and reduced leaf chlorophyll content from about 600 to 400 mg/m2 during fruit development. There was no effect on the number of hermaphrodite flowers produced (both ranging from 0 to 15 hermaphrodite flowers/panicle) but the water deficit was associated with a lower kernel yield (1.16 kg kernel/tree). Commercial yields (kg kernel/tree) in irrigated treatments were 20% greater than in the non-irrigated treatment and the kernels from irrigated trees were of a higher grade (kernel recovery >32% in T1 and T2 compared with 27.4% in T3). These results suggest that irrigation of established cashew plantations in the tropical regions of northern Australia can be restricted to the period between flowering and harvest without reducing yield.


Sign in / Sign up

Export Citation Format

Share Document