Transcriptional regulation of phosphate transporters from Lolium perenne and its mycorrhizal symbionts in response to phosphorus supply

2015 ◽  
Vol 42 (1) ◽  
pp. 1 ◽  
Author(s):  
Qianhe Liu ◽  
Anthony J. Parsons ◽  
Hong Xue ◽  
Chris S. Jones ◽  
Susanne Rasmussen

Phosphate (P) uptake is critical for plant growth, but to date little is known about P uptake and transport in the pasture grass Lolium perenne L. We have identified a putative P transporter (PT) from L. perenne mycorrhizal roots (LpPT1) and assessed its transcriptional regulation by soil P availability and mycorrhizal colonisation. We also investigated transcript levels of fungal PTs from the two arbuscular mycorrhizal species Rhizophagus intraradices and Funneliformis mosseae. Our analyses indicated that LpPT1 codes for a high affinity PT most likely responsible for direct P uptake from the soil. LpPT1 is highly expressed in roots of plants grown at low P, whereas high P repressed its expression. LpPT1 was not expressed in above-ground plant tissues. Colonisation with R. intraradices did not affect expression of LpPT1 significantly. Transcript levels of the R. intraradices PT were not affected by P availability but the F. mosseae PT was repressed by high P supply, particularly in intraradical hyphae. Our study could assist in deciphering the molecular mechanisms of P uptake in the pasture grass L. perenne.

2021 ◽  
Vol 12 ◽  
Author(s):  
Ricardo Alexander Peña Venegas ◽  
Soon-Jae Lee ◽  
Moses Thuita ◽  
Deusdedit Peter Mlay ◽  
Cargele Masso ◽  
...  

A vast majority of terrestrial plants are dependent on arbuscular mycorrhizal fungi (AMF) for their nutrient acquisition. AMF act as an extension of the root system helping phosphate uptake. In agriculture, harnessing the symbiosis can potentially increase plant growth. Application of the AMF Rhizophagus irregularis has been demonstrated to increase the yields of various crops. However, there is a paradigm that AMF colonization of roots, as well as the plant benefits afforded by inoculation with AMF, decreases with increasing phosphorus (P) supply in the soil. The paradigm suggests that when fertilized with sufficient P, inoculation of crops would not be beneficial. However, the majority of experiments demonstrating the paradigm were conducted in sterile conditions without a background AMF or soil microbial community. Interestingly, intraspecific variation in R. irregularis can greatly alter the yield of cassava even at a full application of the recommended P dose. Cassava is a globally important crop, feeding 800 million people worldwide, and a crop that is highly dependent on AMF for P uptake. In this study, field trials were conducted at three locations in Kenya and Tanzania using different AMF and cassava varieties under different P fertilization levels to test if the paradigm occurs in tropical field conditions. We found that AMF colonization and inoculation responsiveness of cassava does not always decrease with an increased P supply as expected by the paradigm. The obtained results demonstrate that maximizing the inoculation responsiveness of cassava is not necessarily only in conditions of low P availability, but that this is dependent on cassava and fungal genotypes. Thus, the modeling of plant symbiosis with AMF under different P levels in nature should be considered with caution.


2008 ◽  
Vol 88 (3) ◽  
pp. 283-294 ◽  
Author(s):  
Christine P Landry ◽  
Chantal Hamel ◽  
Anne Vanasse

Ridge-tilled corn (Zea mays L.) could benefit from arbuscular mycorrhizal (AM) fungi. Under low soil disturbance, AM hyphal networks are preserved and can contribute to corn nutrition. A 2-yr study was conducted in the St. Lawrence Lowlands (Quebec, Canada) to test the effects of indigenous AM fungi on corn P nutrition, growth, and soil P in field cropped for 8 yr under ridge-tillage. Phosphorus treatments (0, 17, 35 kg P ha-1) were applied to AM-inhibited (AMI) (fungicide treated) and AM non-inhibited (AMNI) plots. Plant tissue and soil were sampled 22, 48 and 72 days after seeding (DAS). P dynamics was monitored in situ with anionic exchange membranes (PAEM) from seeding to the end of July. AMNI plants showed extensive AM colonization at all P rates. At 22 DAS, AMI plants had decreased growth in the absence of P inputs, while AMNI plants had higher dry mass (DM) and P uptake in unfertilized plots. The PAEM was lower in the AMNI unfertilized soils in 1998 and at all P rates in 1999, indicating an inverse relationship between P uptake and PAEM. At harvest, grain P content of AMNI plants was greater than that of AMI plants. In 1998, only AMI plants had decreased yield in the absence of P fertilization. In 1999, AMNI plants produced greater grain yield than AMI plants at all P rates. AM fungi improve the exploitation of soil P by corn thereby maintaining high yields while reducing crop reliance on P inputs in RT. Key words: Arbuscular mycorrhizae, ridge-tillage, soil P dynamics, corn, P nutrition


2019 ◽  
Vol 99 (3) ◽  
pp. 292-304
Author(s):  
Tandra D. Fraser ◽  
Derek H. Lynch ◽  
Ivan P. O’Halloran ◽  
R. Paul Voroney ◽  
Martin H. Entz ◽  
...  

Soil phosphorus (P) availability may be impacted by management practices, thereby affecting plant P uptake and plant response to P amendments. The aim of this study was to determine the effects of long-term management on soil P pools and to assess the response of P bioavailability, plant growth, and P uptake to mineral versus manure P treatments. Soils were collected from plots under organic (ORG), organic with composted manure (ORG + M), conventional (CONV), and restored prairie (PRA) management. Italian ryegrass (Lolium multiflorum L.) seedlings were grown in the greenhouse for 106 d in soils amended with various rates of manure or mineral P. The ORG soil had lower concentrations of labile P (resin-P and NaHCO3-P) compared with the CONV and PRA soils, as determined by sequential P fractionation prior to planting. Ryegrass biomass (root + shoot) and shoot P uptake from soils receiving no P were significantly lower for the ORG than all other management systems. Although apparent P use efficiency of the whole plant was increased by low P rate in the ORG management system, the source of applied P, manure > mineral, only influenced Olsen test P.


2003 ◽  
Vol 83 (4) ◽  
pp. 337-342 ◽  
Author(s):  
A. Liu ◽  
C. Hamel ◽  
S. H. Begna ◽  
B. L. Ma ◽  
D. L. Smith

The ability of arbuscular mycorrhizal (AM) fungi to help their host plant absorb soil P is well known, but little attention has been paid to the effect of AM fungi on soil P depletion capacity. A greenhouse experiment was conducted to assess, under different P levels, the effects of mycorrhizae on extractable soil P and P uptake by maize hybrids with contrasting phenotypes. The experiment had three factors, including two mycorrhizal treatments (mycorrhizal and non-mycorrhizal), three P fertilizer rates (0, 40, and 80 mg kg-1) and three maize hybrids [leafy normal stature (LNS), leafy reduced stature (LRS) and a conventional hybrid, Pioneer 3979 (P3979)]. Extractable soil P was determined after 3, 6 and 9 wk of maize growth. Plant biomass, P concentration and total P content were also determined after 9 wk of growth. Fertilization increased soil extractable P, plant biomass, P concentration in plants and total P uptake. In contrast to P3979, the LNS and LRS hybrids had higher biomass and total P content when mycorrhizal. Mycorrhizae had less influence on soil extractable P than on total P uptake by plants. The absence of P fertilization increased the importance of AM fungi for P uptake, which markedly reduced soil extractable P under AM plants during growth. This effect was strongest for LNS, the most mycorrhizae-dependent hybrid, intermediate for LRS, and not significant for the commercial hybrid P3979, which did not respond to AM inoculation. Key words: Arbuscular mycorrhizal fungi, extraradical hyphae, maize hybrid,plant biomass, P uptake, soil extractable P


Soil Research ◽  
2020 ◽  
Vol 58 (3) ◽  
pp. 289
Author(s):  
L. B. Braos ◽  
A. C. T. Bettiol ◽  
L. G. Di Santo ◽  
M. E. Ferreira ◽  
M. C. P. Cruz

The evaluation of phosphorus (P) transformations in soil after application of manure or mineral P can improve soil management and optimise P use by plants. The objectives of the present study were to assess organic and inorganic P forms in two soils treated with dairy manure and triple superphosphate and to establish relationships between soil P fraction levels and P availability. Soil organic and inorganic P fractions were quantified using a pot experiment with two soils, a typical Hapludox and an arenic Hapludult, with three types of fertiliser treatments applied (no fertiliser application, application of dairy manure, and application of triple superphosphate, by adding 100 mg P dm–3 in the form of fertiliser in the two latter treatments) and four incubation times (15, 45, 90, and 180 days). Inorganic P was fractionated into aluminium-bound, iron-bound, occluded, and calcium-bound P. Organic P was extracted sequentially using sodium bicarbonate, hydrochloric acid, microbial biomass, sodium hydroxide, and residual organic P. After incubation, maize plants were cropped to quantify dry matter yield and absorbed P. Application of dairy manure resulted in a significant increase in most of the organic P fractions, and application of triple superphosphate led to a significant increase in inorganic P fractions. Both fertilisers raised labile organic P fractions in the two soils. The major sinks of P in Hapludox were occluded and fulvic acid-associated P. In contrast, the major sink of P in Hapludult was iron-bound P. The available P levels were stable after application of dairy manure, and decreased with time when fertilised with triple superphosphate. In the Hapludox, the organic P fractions had a significant positive correlation with P uptake by plants. The results suggest that organic P mineralisation plays a more significant role in plant P uptake in the Hapludox soil and inorganic P forms are the main contributors to plant P uptake in the Hapludult soil.


Agrologia ◽  
2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Reginawanti Hindersah ◽  
Agnia Nabila ◽  
Ani Yuniarti

Potatoes (Solanum tuberosum L.) which are comonly grown  in the highland with Andisols require organic and inorganic fertilizers to maintain soil health  and increase yield. The purpose of field experiment  was to obtain information on the effect of vermicompost with and without NPK fertilizer  on soil acidity,  soil phosphor (P) availability and P uptake in potatoes shoot; as well as yield and quality of tuber. The experimental design was a randomized block design with eight treatments and three replication. The treatment consisted of a combination of vermicompost doses (5 and 10 t/ha)  with NPK fertilizer doses (0; 0.5 t/ha and 1 t/ha). The two control treatments were 1) without fertilizer and 2) the method of fertilizing local farmers included 10 t /ha chicken manure and 1 t/ha NPK fertilizer. This experiment verified  that vermicompost and NPK fertilizer increased plant height as well as soil P availability and acidity compared to those of control. Vermicompost has not yet substitute chicken manure to obtain the same tuber production although the percentage of marketable tuber was quite similar.  Keywords : Andisols, NPK Fertilizer, Phosphorus, Potato, Vermicompost.


2009 ◽  
Vol 60 (10) ◽  
pp. 987 ◽  
Author(s):  
Terry J. Rose ◽  
Zed Rengel ◽  
Qifu Ma ◽  
John W. Bowden

When the bulk of phosphorus (P) is located near the soil surface, spring drying of topsoil in Mediterranean-type climates can reduce P availability to crops and cause potential yield loss. In crop species that require a P supply during spring, deep-placement of P fertiliser has proved an effective method of improving P availability and grain yields; however, the spring P demand of field-grown canola (Brassica napus L.) and therefore potential response to deep P placement is not known. This study investigated the effect of deep- (0.17–0.18 m), conventional- (shallow, 0.07–0.08 m), split- (50% deep, 50% shallow), and nil-P fertiliser treatments on P accumulation and seed yields of canola in two field trials. In addition, a glasshouse experiment with different depths of P fertiliser placement and topsoil drying at different growth stages was conducted. In the glasshouse study, deep P placement resulted in greater P uptake by plants, but did not increase seed yields regardless of the time of topsoil drying. At the relatively high-soil-P field site (canola grown on residual P application from the previous year) in a dry season, there was no biomass response to any residual P fertiliser treatments, and P accumulation had ceased by mid flowering. At the low-P field site, P accumulation continued throughout flowering and silique-filling, and seed yields increased significantly (P ≤ 0.05) in the order of split- > deep- > shallow- > nil-P treatments. Improved seed yields in the split- and deep-P treatments appeared to be the direct result of enhanced P availability; in particular, P uptake during vegetative growth (winter) was higher in the treatments with deep P placement. A greater understanding of P accumulation by field-grown canola in relation to soil P properties is needed for better defining optimum P fertiliser placement recommendations.


2021 ◽  
Author(s):  
Yanpei Guo ◽  
Zhengbing Yan ◽  
Yi-Wei Zhang ◽  
Guoyi Zhou ◽  
Zongqiang Xie ◽  
...  

Abstract Aims The scaling relationship between nitrogen (N) and phosphorus (P) concentrations ([N] and [P], respectively) in leaves manifests plants’ relative investment between the two nutrients. However, the variation in this relationship among taxa as well as its causes was seldom described. Methods The analysis was based on a dataset including 2,483 leaf samples from 46 genera of angiosperm woody plants from 1,733 sites across China. We calculated the leaf N–P scaling exponent (βL) with an allometric equation ([N]= α[P] β), for each genus respectively. We then performed phylogenetic path analyses to test how the climate and soil niche conditions of these genera contributed to the inter-genus variation in βL. Important Findings The genera living with lower soil P availability presented a more favored P uptake relative to N, as shown by the higher βL, suggesting a resistant trend to P limitation. Additionally, genus-wise βL was positively correlated with soil N–P scaling exponents (βS), implying that the variation in leaf nutrients is constrained by the variability in their sources from soil. Finally, climatic factors including temperature and moisture did not affect βL directly, but could have an indirect influence by mediating soil nutrients. Phylogeny did not affect the inter-genus variation in βL along environmental gradients. These results reveal that the trade-off between N and P uptake is remarkably shaped by genus niches, especially soil nutrient conditions, suggesting that the βL could be considered as a functional trait reflecting characteristics of nutrient utilization of plant taxa in response to niche differentiation.


Agronomy ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 191 ◽  
Author(s):  
Patricia Poblete-Grant ◽  
Philippe Biron ◽  
Thierry Bariac ◽  
Paula Cartes ◽  
María de La Luz Mora ◽  
...  

To maintain grassland productivity and limit resource depletion, scarce mineral P (phosphorus) fertilizers must be replaced by alternative P sources. The effect of these amendments on plant growth may depend on physicochemical soil parameters, in particular pH. The objective of this study was to investigate the effect of soil pH on biomass production, P use efficiency, and soil P forms after P amendment application (100 mg kg−1 P) using poultry manure compost (PM), rock phosphate (RP), and their combination (PMRP). We performed a growth chamber experiment with ryegrass plants (Lolium perenne) grown on two soil types with contrasting pH under controlled conditions for 7 weeks. Chemical P fractions, biomass production, and P concentrations were measured to calculate plant uptake and P use efficiency. We found a strong synergistic effect on the available soil P, while antagonistic effects were observed for ryegrass production and P uptake. We conclude that although the combination of PM and RP has positive effects in terms of soil P availability, the combined effects of the mixture must be taken into account and further evaluated for different soil types and grassland plants to maximize synergistic effects and to minimize antagonistic ones.


2018 ◽  
Vol 64 (No. 9) ◽  
pp. 441-447 ◽  
Author(s):  
Jarosch Klaus A ◽  
Santner Jakob ◽  
Parvage Mohammed Masud ◽  
Gerzabek Martin Hubert ◽  
Zehetner Franz ◽  
...  

Soil phosphorus (P) availability was assessed with four different soil P tests on seven soils of the Ultuna long-term field experiment (Sweden). These four soil P tests were (1) P-H<sub>2</sub>O (water extractable P); (2) P-H<sub>2</sub>O<sub>C10</sub> (water extractable P upon 10 consecutive extractions); (3) P-AL (ammonium lactate extractable P) and (4) P-C<sub>DGT</sub> (P desorbable using diffusive gradients in thin films). The suitability of these soil P tests to predict P availability was assessed by correlation with plant P uptake (mean of preceding 11 years) and soil P balancing (input vs. output on plot level for a period of 54 years). The ability to predict these parameters was in the order P-H<sub>2</sub>O<sub>C10</sub> &gt; P-C<sub>DGT</sub> &gt; P-H<sub>2</sub>O &gt; P-AL. Thus, methods considering the P-resupply from the soil solid phase to soil solution performed clearly better than equilibrium-based extractions. Our findings suggest that the P-AL test, commonly used for P-fertilizer recommendations in Sweden, could not predict plant P uptake and the soil P balance in a satisfying way in the analysed soils.


Sign in / Sign up

Export Citation Format

Share Document