Dynamic analysis of the impact of free-air CO2 enrichment (FACE) on biomass and N uptake in two contrasting genotypes of rice

2018 ◽  
Vol 45 (7) ◽  
pp. 696 ◽  
Author(s):  
Jingjing Wu ◽  
Herbert J. Kronzucker ◽  
Weiming Shi

Elevated CO2 concentrations ([CO2]) in the atmosphere often increase photosynthetic rates and crop yields. However, the degree of the CO2 enhancement varies substantially among cultivars and with growth stage. Here, we examined the responses of two rice cultivars, Wuyunjing23 (WYJ) and IIyou084 (IIY), to two [CO2] (~400 vs ~600) and two nitrogen (N) provision conditions at five growth stages. In general, both seed yield and aboveground biomass were more responsive to elevated [CO2] in IIY than WYJ. However, the responses significantly changed at different N levels and growth stages. At the low N input, yield response to elevated [CO2] was negligible in both cultivars while, at the normal input, yield in IIY was 18.8% higher under elevated [CO2] than ambient [CO2]. Also, responses to elevated [CO2] significantly differed among various growth stages. Elevated [CO2] tended to increase aboveground plant biomass in both cultivars at the panicle initiation (PI) and the heading stages, but this effect was significant only in IIY by the mid-ripening and the grain maturity stages. In contrast, CO2 enhancement of root biomass only occurred in IIY. Elevated [CO2] increased both total N uptake and seed N in IIY but only increased seed N in WYJ, indicating that it enhanced N translocation to seeds in both cultivars but promoted plant N acquisition only in IIY. Root C accumulation and N uptake also exhibited stronger responses in IIY than in WYJ, particularly at the heading stage, which may play a pivotal role in seed filling and seed yield. Our results showed that the more effective use of CO2 in IIY compared with WYJ results in a strong response in root growth, nitrogen uptake, and in yield. These findings suggest that selection of [CO2]-responsive rice cultivars may help optimise the rice yield under future [CO2] scenarios.

Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1505
Author(s):  
Amritbir Riar ◽  
Gurjeet Gill ◽  
Glenn K. McDonald

Canola has a high nitrogen requirement and optimal nitrogen (N) management in environments with variable rainfall is a challenge. This study investigated the impact of timing of N as a single or split application at different growth stages on seed yield, N uptake and water-use efficiency in canola. Nitrogen rates of 100 and 200 kg ha−1 were applied after sowing when two leaves were unfolded or equally split between the rosette, green bud and first flower stages. The experiments were conducted at two sites with contrasting rainfall and a supplementary irrigation treatment at the low rainfall site, generating a third environment. Nitrogen application increased seed yield by up to 20% at a high rainfall site and by up to 77% at a medium rainfall site, but the timing of N did not significantly affect the yield response to N. Seed yield was closely associated with total dry matter production and seed m−2. N-use efficiency was influenced more by N recovery and uptake efficiency, rather than physiological efficiency, which highlights the importance of soil moisture availability and the ability of the crop to exploit soil water and N reserves. The results suggest that better use of subsoil moisture by overcoming some of the subsoil constraints may be an avenue for further improvements in yield and nitrogen-use efficiency (NUE) of canola in this environment.


Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 372
Author(s):  
Chumki Banik ◽  
Jacek A. Koziel ◽  
Darcy Bonds ◽  
Asheesh K. Singh ◽  
Mark A. Licht

The use of swine manure as a source of plant nutrients is one alternative to synthetic fertilizers. However, conventional manure application with >90% water and a low C:N ratio results in soil C loss to the atmosphere. Our hypothesis was to use biochar as a manure nutrient stabilizer that would slowly release nutrients to plants upon biochar-swine manure mixture application to soil. The objectives were to evaluate the impact of biochar-treated swine manure on soil total C, N, and plant-available macro- and micronutrients in greenhouse-cultivated corn (Zea mays L.) and soybean (Glycine max (L.) Merr.). Neutral pH red oak (RO), highly alkaline autothermal corn stover (HAP), and mild acidic Fe-treated autothermal corn stover (HAPE) biomass were pyrolyzed to prepare biochars. Each biochar was surface-applied to swine manure at a 1:4 (biochar wt/manure wt) ratio to generate mixtures of manure and respective biochars (MRO, MHAP, and MHAPE). Conventional manure (M) control and manure-biochar mixtures were then applied to the soil at a recommended rate. Corn and soybean were grown under these controls and treatments (S, M, MRO, MHAP, and MHAPE) to evaluate the manure-biochar impact on soil quality, plant biomass yield, and nutrient uptake. Soil organic matter significantly (<0.05) increased in all manure-biochar treatments; however, no change in soil pH or total N was observed under any treatment. No difference in soil ammonium between treatments was identified. There was a significant decrease in soil Mehlich3 (M3) P and KCl extractable soil NO3− for all manure-biochar treatments compared to the conventional M. However, the plant biomass nutrient concentrations were not significantly different from control manure. Moreover, an increasing trend of plant total N and decreasing trend of P in the plant under all biochar-manure treatments than the controls were noted. This observation suggests that the presence of biochar is capable of influencing the soil N and P in such a way as not to lose those nutrients at the early growth stages of the plant. In general, no statistical difference in corn or soybean biomass yield and plant nutrient uptake for N, P, and K was observed. Interestingly, manure-biochar application to soil significantly diluted the M3 extractable soil Cu and Zn concentrations. The results attribute that manure-biochar has the potential to be a better soil amendment than conventional manure application to the soil.


HortScience ◽  
2015 ◽  
Vol 50 (4) ◽  
pp. 597-602 ◽  
Author(s):  
Charis-Konstantina Kontopoulou ◽  
Sofia Giagkou ◽  
Efthalia Stathi ◽  
Dimitrios Savvas ◽  
Pietro P.M. Iannetta

To date, few attempts have been made to assess the impact of Rhizobium inoculation on N2 fixation and plant yield in soilless cultivations of common bean. In the present study, common bean (P. vulgaris L.) grown on an inert medium (pumice) was inoculated with either Rhizobium tropici CIAT899 or a commercial product containing a mix of N2-fixing bacteria, specifically rhizobia, and Azotobacter sp. The plants treated with both inoculants were supplied with nitrogen (N)-free (0% N) nutrient solution (NS) throughout the cropping period. A third treatment with non-inoculated plants, which were supplied with a standard (100% N) NS was applied as a control. Inoculation with R. tropici significantly increased the total number of root nodules (80 nodules per plant on average) in comparison with the other two treatments (nine nodules per plant on average). The supply of N-free NS restricted markedly both total plant biomass and pod yield, whereas the inoculation with R. tropici mitigated this effect. The aboveground tissues of plants fed with N-free NS contained appreciably less N than those fed with standard solution when they were inoculated with the commercial inoculant (1.7 vs. 29 mg·g−1 dry weight, respectively). The shoot total N concentration 45, 65, and 90 days after transplanting (32, 31, and 29 mg·g−1 dry weight, respectively) was not reduced by the supply of N-free NS when the plants were inoculated with R. tropici. This finding indicates that, at least from the first sampling date onward, the tissue N level was not a limiting factor for growth and yield in plants inoculated with R. tropici. The supply of N-free NS restricted appreciably the potassium (K), magnesium (Mg), and zinc (Zn) levels in the aboveground plant biomass, regardless of inoculation treatment. The impaired growth and yield in plants fed with N-free NS and inoculated with R. tropici is ascribed to both a N shortage at early growth stages and a reduced K+ uptake aimed at electrochemically balancing the anion-to-cation uptake ratio under conditions of no external NO3– supply.


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1356
Author(s):  
Amanullah ◽  
Inamullah ◽  
Jawaher Alkahtani ◽  
Mohamed Soliman Elshikh ◽  
Mona S. Alwahibi ◽  
...  

Under the rice–wheat cropping system (RWS), the continuous cropping of rice (Oryza sativa L.) and wheat (Triticum aestivum L.) deplete soil fertility, and reduce crop growth and total rice biomass. In RWS, both phosphorus (P) and zinc (Zn) deficiencies are considered important nutritional constraints for reducing rice crop growth rates (CGR) and total biomass/biological yield (BY). The objective of this experiment was to investigate the impact of phosphorus (0, 40, 80, 120 kg P ha−1) and zinc rates (0, 5, 10, 15 kg Zn ha−1) on CGR and BY of three rice genotypes [fine (Bamati-385) versus coarse (Fakhre-e-Malakand and Pukhraj)] in Northwestern Pakistan during summer 2011 (Y1) and 2012 (Y2). The results revealed that higher CGR at various growth stages and total BY was obtained with the integrated use of higher phosphorus (80 and 120 kg P ha−1) and zinc rates (10 and 15 kg Zn ha−1). The lower CGR and BY were recorded when P and Zn were not applied (control) or when P and Zn were applied alone. In the case of rice genotypes, the highest CGR and BY were recorded for the hybrid rice (Pukhraj) than the other two genotypes. The CGR was increased to the highest level at the heading stage as compared to tillering and physiological maturity. The increase in CGR had a positive impact on the total BY of rice cultivars. The increase in BY had a positive relationship with grain yield and grower’s income. It was concluded from the study that the combined application of higher P and Zn rates to the coarse rice genotypes (Fakhre-e-Malakand and Pukhraj) could increase CGR, total BY, crop productivity and profitability.


2013 ◽  
Vol 40 (2) ◽  
pp. 201 ◽  
Author(s):  
Gyro L. Sherwin ◽  
Laurel George ◽  
Kamali Kannangara ◽  
David T. Tissue ◽  
Oula Ghannoum

This study explored reductions in tissue nitrogen concentration ([N]) at elevated CO2 concentrations ([CO2]), and changes in plant water and N uptake. Eucalyptus saligna Sm. seedlings were grown under three [CO2] levels (preindustrial (280 μL L–1), current (400 μL L–1) or projected (640 μL L–1)) and two air temperatures (current, (current + 4°C)). Gravimetric water use, leaf gas exchange and tissue dry mass and %N were determined. Solid-state 15N-NMR spectroscopy was used for determining the partitioning of N chemical groups in the dry matter fractions. Water use efficiency (WUE) improved with increasing [CO2] at ambient temperature, but strong leaf area and weak reductions in transpiration rates led to greater water use at elevated [CO2]. High temperature increased plant water use, such that WUE was not significantly stimulated by increasing [CO2] at high temperature. Total N uptake increased with increasing [CO2] but not temperature, less than the increase recorded for plant biomass. Tissue [N] decreased with rising [CO2] and at high temperature, but N use efficiency increased with rising [CO2]. Total N uptake was positively correlated with total water use and root biomass under all treatments. Growth [CO2] and temperature did not affect the partitioning of 15N among the N chemical groups. The reductions of tissue [N] with [CO2] and temperature were generic, not specific to particular N compounds. The results suggest that reductions in tissue [N] are caused by changes in root N uptake by mass flow due to altered transpiration rates at elevated [CO2] and temperature.


2016 ◽  
Vol 155 (2) ◽  
pp. 261-281 ◽  
Author(s):  
S. E. ROQUES ◽  
D. R. KINDRED ◽  
S. CLARKE

SUMMARYTriticale has a reputation for performing well on poor soils, under drought and with reduced inputs, but there has been little investigation of its performance on the better yielding soils dominated by wheat production. The present paper reports 16 field experiments comparing wheat and triticale yield responses to nitrogen (N) fertilizer on high-yielding soils in the UK in harvest years 2009–2014. Each experiment included at least two wheat and at least two triticale varieties, grown at five or six N fertilizer rates from 0 to at least 260 kg N/ha. Linear plus exponential curves were fitted to describe the yield response to N and to calculate economically optimal N rates. Normal type curves with depletion were used to describe protein responses to N. Whole crop samples from selected treatments were taken prior to harvest to measure crop biomass, harvest index, crop N content and yield components. At commercial N rates, mean triticale yield was higher than the mean wheat yield at 13 out of 16 sites; the mean yield advantage of triticale was 0·53 t/ha in the first cereal position and 1·26 t/ha in the second cereal position. Optimal N requirement varied with variety at ten of the 16 sites, but there was no consistent difference between the optimal N rates of wheat and triticale. Triticale grain had lower protein content and lower specific weight than wheat grain. Triticale typically showed higher biomass and straw yields, lower harvest index and higher total N uptake than wheat. Consequently, triticale had higher N uptake efficiency and higher N use efficiency. Based on this study, current N fertilizer recommendations for triticale in the UK are too low, as are national statistics and expectations of triticale yields. The implications of these findings for arable cropping and cereals markets in the UK and Northern Europe are discussed, and the changes which would need to occur to allow triticale to fulfil a role in achieving sustainable intensification are explored.


2015 ◽  
Vol 12 (18) ◽  
pp. 15301-15336 ◽  
Author(s):  
D. E. Pelster ◽  
M. C. Rufino ◽  
T. Rosenstock ◽  
J. Mango ◽  
G. Saiz ◽  
...  

Abstract. Few field studies examine greenhouse gas (GHG) emissions from African agricultural systems resulting in high uncertainty for national inventories. We provide here the most comprehensive study in Africa to date, examining annual CO2, CH4 and N2O emissions from 59 plots, across different vegetation types, field types and land classes in western Kenya. The study area consists of a lowland area (approximately 1200 m a.s.l.) rising approximately 600 m to a highland plateau. Cumulative annual fluxes ranged from 2.8 to 15.0 Mg CO2-C ha−1, −6.0 to 2.4 kg CH4-C ha−1 and −0.1 to 1.8 kg N2O-N ha−1. Management intensity of the plots did not result in differences in annual fluxes for the GHGs measured (P = 0.46, 0.67 and 0.14 for CO2, N2O and CH4 respectively). The similar emissions were likely related to low fertilizer input rates (≤ 20 kg ha−1). Grazing plots had the highest CO2 fluxes (P = 0.005); treed plots were a larger CH4 sink than grazing plots (P = 0.05); while N2O emissions were similar across vegetation types (P = 0.59). This case study is likely representative for low fertilizer input, smallholder systems across sub-Saharan Africa, providing critical data for estimating regional or continental GHG inventories. Low crop yields, likely due to low inputs, resulted in high (up to 67 g N2O-N kg−1 aboveground N uptake) yield-scaled emissions. Improving crop production through intensification of agricultural production (i.e. water and nutrient management) may be an important tool to mitigate the impact of African agriculture on climate change.


Agronomy ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 669 ◽  
Author(s):  
Arampatzis ◽  
Karkanis ◽  
Tsiropoulos

Milk thistle (Silybum marianum (L.) Gaertn.) is a promising new crop in the Mediterranean region. Its seeds contain silymarin, a complex of flavonolignans, which is widely used in the pharmaceutical industry, mainly to produce dietary supplements. To meet the increasing demand for milk thistle, the production and productivity of milk thistle should also be optimized by employing adequate cultivation practices. In the present study, a two-year field experiment was conducted to assess the effects of plant density and a plant growth regulator on milk thistle crop growth, seed yield, and silymarin accumulation under Mediterranean semi-arid conditions. Our results showed that plant density had a significant impact on milk thistle crop growth and seed yield. The main crop characteristics, such as height, aboveground biomass, and seed yield were greatest when plant density was the highest. Increased plant density significantly reduced the silymarin content only in 2018. In contrast, mepiquat chloride (MC) treatment did not affect the following traits: plant biomass, relative chlorophyll content, silymarin content, and production. Nevertheless, mepiquat chloride reduced the plant height by 7.9%–14.8%, depending on the application rates and growth conditions. Moreover, the impact of climatic conditions on milk thistle production and quality was significant, since the lowest values of silymarin content and seed yield were recorded in the year with drought conditions during the period from March to May.


2009 ◽  
Vol 55 (No. 12) ◽  
pp. 519-527 ◽  
Author(s):  
J. Potarzycki ◽  
W. Grzebisz

Actual yields of maize harvested by farmers are at level much below attainable yield potential of currently cultivated varieties. Among many growth factors zinc was recognized as one of main limiting factors of maize crop growth and yielding. This hypothesis has been verified within a three-year field study, where zinc fertilizer was applied to maize plants at the 5<sup>th</sup> leaf stage. Maize crop responded significantly to zinc foliar application in two of three years of study. The optimal rate of zinc foliar spray for achieving significant grain yield response was in the range from 1.0 to 1.5 kg Zn/ha. Grain yield increase was circa 18% (mean of three years) as compared to the treatment fertilized only with NPK. Plants fertilized with 1.0 kg Zn/ha significantly increased both total N uptake and grain yield. Yield forming effect of zinc fertilizer revealed via improvement of yield structure elements. The number of kernels per plant showed the highest response (+17.8% as compared to the NPK plot) and simultaneously the highest dependence on N uptake (<i>R</i><sup>2</sup> = 0.79). For this particular zinc treatment, however, the length of cob can also be applied as a component of yield structure significantly shaping the final grain yield.


2019 ◽  
Vol 46 (1) ◽  
pp. 1-7 ◽  
Author(s):  
C. C. Abbott ◽  
J. M. Sarver ◽  
J. Gore ◽  
D. Cook ◽  
A. Catchot ◽  
...  

ABSTRACT Defoliation of peanut by foliage-feeding insects reduces photosynthetic capacity, and in turn, may reduce pod yield, particularly when canopy loss occurs at critical growth stages, i.e., 40 or 80 d after full plant emergence (DAE). The objective of this research was to determine the impact of peanut defoliation levels of 0, 20, 40, 60, 80, and 100%, at 40 or 80 DAE on canopy height and width, plant biomass, pod grade and yield, and economic injury level. Research was conducted in Stoneville and Starkville MS in 2015 and 2016. The experimental design was a six (defoliation level) by two (defoliation timing) factorial arranged in a randomized complete block. Up to four wk after defoliation, canopy height, canopy width, and plant biomass were negatively correlated with defoliation level regardless of defoliation timing (40 and 80 DAE). Neither defoliation level nor timing had an effect on peanut grade or maturity. Similarly, defoliation at 40 DAE did not affect pod yield but when damage occurred 80 DAE, pod yield was reduced 18.6 kg/ha for every 1% increase in defoliation. Considering average crop value and insect control costs, the economic injury for peanut defoliation at 80 DAE is 5% defoliation. These data indicate that control of canopy-feeding insects is only economically viable when defoliation exceeds 5% defoliation at 80 DAE.


Sign in / Sign up

Export Citation Format

Share Document