Disentangling the taxonomy of the Galactia-Camptosema- Collaea complex with new generic circumscriptions in the Galactia clade (Leguminosae, Diocleae)

Neodiversity ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 56-94
Author(s):  
Luciano P. Queiroz ◽  
◽  
Ana C.S. Oliveira ◽  
Cristiane Snak

The Galactia clade is one of three major lineages of the papilionoid legume tribe Diocleae. It comprises eight genera and approximately 140 species almost entirely restricted to the Americas. Establishing stable generic boundaries within this clade has been a challenge because of its tortuous taxonomic history and the broad polyphyly of the genera of the so-called Galactia-Camptosema-Collaea complex. Previous molecular phylogenetic studies revealed some well-supported lineages, but did not advance towards any new taxonomic arrangements. We carried out maximum parsimony and Bayesian phylogenetic analyses of a combined dataset including our previously published multilocus molecular data (nrITS and ETS and plastid trnK/matK and trnT-Y regions) and 82 morphological characters. The resulting topologies largely concur with those previously reported based on molecular data only, where Camptosema and Galactia appear as broadly polyphyletic, with species scattered among five (Camptosema) and seven (Galactia) of the twelve lineages that are newly recognized here at genus level. We are therefore proposing the following new taxonomic rearrangements within the Galactia clade: descriptions of the new genera Caetangil, Cerradicola, Mantiqueira, and Nanogalactia; resurrection of Betencourtia; and the subsuming of Neorudolphia into Rhodopis and of Camptosema sect. Macropetalum into Cratylia.

Zootaxa ◽  
2009 ◽  
Vol 2174 (1) ◽  
pp. 51-62 ◽  
Author(s):  
P. A. DINGHI ◽  
V. CONFALONIERI ◽  
M. M. CIGLIANO

The Dichroplini genera Scotussa, Leiotettix, Ronderosia, Atrachelacris, Chlorus, Eurotettix and Dichromatos have been grouped into the “Paranaense-Pampeano” informal genus group, based on characters of the male genitalia. However, recent molecular phylogenetic analyses showed weak support values or no support at all for this group. In this study, we used molecular and morphological characters to test the monophyly of this informal genus group. Morphological characters included aspects of the general morphology, and male and female genitalia as well. Whereas the molecular data was based on one mitochondrial gene: cytochrome oxidase I. Independent and combined phylogenetic analyses of the data were performed under both unweighted and implied weighting parsimony. Our results showed that, when only molecular data is considered, the “Paranaense-Pampeano” informal genus group is not recovered. However, the group is monophyletic according to morphological and combined analyses. The “Paranaense-Pampeano” informal genus group is considered to be a natural clade; therefore, we propose the genus group name Scotussae. As a final remark, the molecular data provided in most cases the same evidence of relationships as morphology.


2021 ◽  
Vol 307 (2) ◽  
Author(s):  
Pau Carnicero ◽  
Núria Garcia-Jacas ◽  
Llorenç Sáez ◽  
Theophanis Constantinidis ◽  
Mercè Galbany-Casals

AbstractThe eastern Mediterranean basin hosts a remarkably high plant diversity. Historical connections between currently isolated areas across the Aegean region and long-distance dispersal events have been invoked to explain current distribution patterns of species. According to most recent treatments, at least two Cymbalaria species occur in this area, Cymbalaria microcalyx and C. longipes. The former comprises several intraspecific taxa, treated at different ranks by different authors based on morphological data, evidencing the need of a taxonomic revision. Additionally, some populations of C. microcalyx show exclusive morphological characters that do not match any described taxon. Here, we aim to shed light on the systematics of eastern Mediterranean Cymbalaria and to propose a classification informed by various sources of evidence. We performed molecular phylogenetic analyses using ITS, 3’ETS, ndhF and rpl32-trnL sequences and estimated the ploidy level of some taxa performing relative genome size measures. Molecular data combined with morphology support the division of traditionally delimited C. microcalyx into C. acutiloba, C. microcalyx and C. minor, corresponding to well-delimited nrDNA lineages. Furthermore, we propose to combine C. microcalyx subsp. paradoxa at the species level. A group of specimens previously thought to belong to Cymbalaria microcalyx constitute a well-defined phylogenetic and morphological entity and are described here as a new species, Cymbalaria spetae. Cymbalaria longipes is non-monophyletic, but characterized by being glabrous and diploid, unlike other eastern species. The nrDNA data suggest at least two dispersals from the mainland to the Aegean Islands, potentially facilitated by marine regressions.


2021 ◽  
Vol 99 (2) ◽  
pp. 398-412
Author(s):  
Marcelo R. Pace ◽  
Brenda Hernández-Hernández ◽  
Esteban M. Martínez Salas ◽  
Lúcia G. Lohmann ◽  
N. Ivalu Cacho

Background: Astianthus is a monospecific arborescent genus of Bignoniaceae that occur in the Pacific Coast of central Mexico and northern Central America, where it grows in dense populations along riversides. Its phylogenetic placement has remained controversial since Astianthus has unusual morphological characters such as a four-loculed ovary, and simple, pulvinate, verticillate leaves. Methods: Here we used three plastid markers ndhF, rbcL, and trnL-F, wood, and bark anatomical data to investigate the phylogenetic placement of Astianthus and assign it to one of Bignoniaceae’s main clades. Results: Our molecular phylogenetic analyses indicated that Astianthus belongs in tribe Tecomeae s.s., where other charismatic Neotropical Bignoniaceae genera such as Campsis and Tecoma are currently placed. Wood and bark anatomy support this placement, as Astianthus reunites a unique combination of features only known from members of Tecomeae s.s., such as storied axial parenchyma, the co-occurrence of homo- and heterocellular rays, septate fibers, and scattered phloem fibers in the bark. Conclusions: The placement of Astianthus within Tecomeae s.s. provides further support to previous proposals for the Neotropical origin of this Pantropical tribe.


ZooKeys ◽  
2018 ◽  
Vol 761 ◽  
pp. 1-177 ◽  
Author(s):  
Ruttapon Srisonchai ◽  
Henrik Enghoff ◽  
Natdanai Likhitrakarn ◽  
Somsak Panha

The dragon millipede genusDesmoxytess.l. is split into five genera, based on morphological characters and preliminary molecular phylogenetic analyses. The present article includes a review ofDesmoxytess.s., while future articles will deal withHylomusCook and Loomis, 1924 and three new genera which preliminarily are referred to as the ‘acantherpestes’, ‘gigas’, and ‘spiny’ groups. Diagnostic morphological characters of each group are discussed.Hylomusis resurrected as a valid genus and the following 33 species are assigned to it:H.asper(Attems, 1937),comb. n.,H.cattienensis(Nguyen, Golovatch & Anichkin, 2005),comb. n.,H.cervarius(Attems, 1953),comb. n.,H.cornutus(Zhang & Li, 1982),comb. n.,H.dracoCook & Loomis, 1924,stat. rev.,H.enghoffi(Nguyen, Golovatch & Anichkin, 2005),comb. n.,H.eupterygotus(Golovatch, Li, Liu & Geoffroy, 2012),comb. n.,H.getuhensis(Liu, Golovatch & Tian, 2014),comb. n.,H.grandis(Golovatch, VandenSpiegel & Semenyuk, 2016),comb. n.,H.hostilis(Golovatch & Enghoff, 1994),comb. n.,H.jeekeli(Golovatch & Enghoff, 1994),comb. n.,H.lingulatus(Liu, Golovatch & Tian, 2014),comb. n.,H.laticollis(Liu, Golovatch & Tian, 2016),comb. n.,H.longispinus(Loksa, 1960),comb. n.,H.lui(Golovatch, Li, Liu & Geoffroy, 2012),comb. n.,H.minutuberculus(Zhang, 1986),comb. n.,H.nodulosus(Liu, Golovatch & Tian, 2014),comb. n.,H.parvulus(Liu, Golovatch & Tian, 2014),comb. n.,H.phasmoides(Liu, Golovatch & Tian, 2016),comb. n.,H.pilosus(Attems, 1937),comb. n.,H.proximus(Nguyen, Golovatch & Anichkin, 2005),comb. n.,H.rhinoceros(Likhitrakarn, Golovatch & Panha, 2015),comb. n.,H.rhinoparvus(Likhitrakarn, Golovatch & Panha, 2015),comb. n.,H.scolopendroides(Golovatch, Geoffroy & Mauriès, 2010),comb. n.,H.scutigeroides(Golovatch, Geoffroy & Mauriès, 2010),comb. n.,H.similis(Liu, Golovatch & Tian, 2016),comb. n.,H.simplex(Golovatch, VandenSpiegel & Semenyuk, 2016),comb. n.,H.simplipodus(Liu, Golovatch & Tian, 2016),comb. n.,H.specialis(Nguyen, Golovatch & Anichkin, 2005),comb. n.,H.spectabilis(Attems, 1937),comb. n.,H.spinitergus(Liu, Golovatch & Tian, 2016),comb. n.,H.spinissimus(Golovatch, Li, Liu & Geoffroy, 2012),comb. n.andH.variabilis(Liu, Golovatch & Tian, 2016),comb. n.Desmoxytess.s. includes the following species:D.breviverpaSrisonchai, Enghoff & Panha, 2016;D.cervina(Pocock,1895);D.delfae(Jeekel, 1964);D.desSrisonchai, Enghoff & Panha, 2016;D.pinnasqualiSrisonchai, Enghoff & Panha, 2016;D.planata(Pocock, 1895);D.purpuroseaEnghoff, Sutcharit & Panha, 2007;D.takensisSrisonchai, Enghoff & Panha, 2016;D.taurina(Pocock, 1895);D.terae(Jeekel, 1964), all of which are re-described based mainly on type material. Two new synonyms are proposed:DesmoxytespterygotaGolovatch & Enghoff, 1994,syn. n.(=Desmoxytescervina(Pocock, 1895)),DesmoxytesrubraGolovatch & Enghoff, 1994,syn. n.(=Desmoxytesdelfae(Jeekel, 1964)). Six new species are described from Thailand:D.aurataSrisonchai, Enghoff & Panha,sp. n.,D.corythosaurusSrisonchai, Enghoff & Panha,sp. n.,D.eurosSrisonchai, Enghoff & Panha,sp. n.,D.flabellaSrisonchai, Enghoff & Panha,sp. n.,D.golovatchiSrisonchai, Enghoff & Panha,sp. n.,D.octoconigeraSrisonchai, Enghoff & Panha,sp. n., as well as one from Malaysia:D.perakensisSrisonchai, Enghoff & Panha,sp. n., and one from Myanmar:D.waepyanensisSrisonchai, Enghoff & Panha,sp. n.The species can mostly be easily distinguished by gonopod structure in combination with other external characters; some cases of particularly similar congeners are discussed. All species ofDesmoxytess.s. seem to be endemic to continental Southeast Asia (except the ‘tramp’ speciesD.planata). Some biological observations (relationship with mites, moulting) are recorded for the first time. Complete illustrations of external morphological characters, an identification key, and distribution maps of all species are provided.


2015 ◽  
Vol 46 (3) ◽  
pp. 269-290 ◽  
Author(s):  
Ian J. Kitching ◽  
C. Lorna Culverwell ◽  
Ralph E. Harbach

Lutzia Theobald was reduced to a subgenus of Culex in 1932 and was treated as such until it was restored to its original generic status in 2003, based mainly on modifications of the larvae for predation. Previous phylogenetic studies based on morphological and molecular data have provided conflicting support for the generic status of Lutzia: analyses of morphological data support the generic status whereas analyses based on DNA sequences do not. Our previous phylogenetic analyses of Culicini (based on 169 morphological characters and 86 species representing the four genera and 26 subgenera of Culicini, most informal group taxa of subgenus Culex and five outgroup species from other tribes) seemed to indicate a conflict between adult and larval morphological data. Hence, we conducted a series of comparative and data exclusion analyses to determine whether the alternative positions of Lutzia are due to conflicting signal or to a lack of strong signal. We found that separate and combined analyses of adult and larval data support different patterns of relationships between Lutzia and other Culicini. However, the majority of conflicting clades are poorly supported and once these are removed from consideration, most of the topological disparity disappears, along with much of the resolution, suggesting that morphology alone does not have sufficiently strong signal to resolve the position of Lutzia. We critically examine the results of other phylogenetic studies of culicinine relationships and conclude that no morphological or molecular data set analysed in any study conducted to date has adequate signal to place Lutzia unequivocally with regard to other taxa in Culicini. Phylogenetic relationships observed thus far suggest that Lutzia is placed within Culex but further data and extended taxon sampling are required to confirm its position relative to Culex.


Nematology ◽  
2017 ◽  
Vol 19 (2) ◽  
pp. 121-129 ◽  
Author(s):  
Majid Pedram ◽  
Ali Roshan-Bakhsh ◽  
Ebrahim Pourjam ◽  
Mohammad Reza Atighi ◽  
Wilfrida Decraemer ◽  
...  

Trichodorus variabilis, recovered from three separate locations in natural forests of northern Iran, was studied using morphological, morphometric and molecular data. Variation in position of the ventromedian cervical papillae (CP1 and CP2) with respect to the onchiostyle base in the resting position, and spicule characters (having or lacking striation in distal blade region and bristles in proximal blade region) were observed. Variation was also observed in the nature of the pharyngo-intestinal junction (offset to slight overlapping). The secretory-excretory pore of females also showed slight variation in placement. Molecular phylogenetic studies, using partial 28S rDNA D2-D3 sequences of three studied populations and one sequenced isolate of the species from Greece, revealed T. variabilis has variation in the sequences of this genomic fragment. The similarity percent of four sequences ranged from 96.7 to 99.7%. The species was found for the first time outside of Greece, the country from which it was originally described. A newly recovered population of T. persicus, originally described from Iran, was also included in the molecular phylogenetic analyses.


2015 ◽  
Vol 29 (6) ◽  
pp. 591 ◽  
Author(s):  
Marco Gebiola ◽  
Antonio P. Garonna ◽  
Umberto Bernardo ◽  
Sergey A. Belokobylskij

Doryctinae (Hymenoptera : Braconidae) is a large and diverse subfamily of parasitic wasps that has received much attention recently, with new species and genera described and phylogenies based on morphological and/or molecular data that have improved higher-level classification and species delimitation. However, the status of several genera is still unresolved, if not controversial. Here we focus on two related groups of such genera, Dendrosoter Wesmael–Caenopachys Foerster and Ecphylus Foerster–Sycosoter Picard & Lichtenstein. We integrated morphological and molecular (COI and 28S–D2 genes) evidence to highlight, by phylogenetic analyses (maximum likelihood and Bayesian) and a posteriori morphological examination, previously overlooked variation, which is here illustrated and discussed. Monophyly of Dendrosoter and Caenopachys and the presence of synapomorphic morphological characters support synonymy of Caenopachys under Dendrosoter. Low genetic differentiation and high variability for putatively diagnostic morphological characters found in both C. hartigii (Ratzeburg) and C. caenopachoides (Ruschka) supports synonymy of D. caenopachoides under D. hartigii, syn. nov. Morphological and molecular evidence together also indicate independent generic status for Sycosoter, stat. rev., which is here resurrected. This work represents a further advancement in the framework of the ongoing effort to improve systematics and classification of the subfamily Doryctinae.


Phytotaxa ◽  
2018 ◽  
Vol 345 (1) ◽  
pp. 35 ◽  
Author(s):  
BIAO XU ◽  
UWE BRAUN ◽  
SHANHE ZHANG ◽  
HUI YANG ◽  
ZHI CAO ◽  
...  

Bauhinia species are popular ornamental and medicinal plants with a pantropical distribution. In December 2016, powdery mildew symptoms were found on B. blakeana and B. purpurea in Guangdong, China. Based on ITS and 28S rDNA sequences, as well as morphological characters, the powdery mildew was identified as Erysiphe lespedezae. Previous records of powdery mildews on Bauhinia spp. are discussed. Based on morphological and molecular phylogenetic analyses of type material, Pseudoidium caesalpiniacearum is reduced to synonymy with E. lespedezae. To our best knowledge, this is the first report of E. lespedezae causing powdery mildew on B. purpurea in China, and B. blakeana as a new host. A detailed morphological description and molecular data are provided herein.


2016 ◽  
Vol 4 (1) ◽  
pp. 35 ◽  
Author(s):  
Topik Hidayat ◽  
Adi Pancoro

<p>Early information<br />resulted from molecular phylogenetic studies of many important<br />ornamental crops is often less attention to many<br />growers and farmers. Phylogenetics is one of the most preferable<br />method in systematics to reconstruct evolutionary<br />relationships of groups of biological organisms in order to<br />understand their biodiversities. This has been revolutionized<br />by DNA sequences data. In this method, a group of organisms<br />that shares many identical characteristics are considered<br />to be closely related; deriving from a common<br />ancestor and is assumed to have similar genetic patterns<br />and biochemical properties. By these basic principles,<br />molecular phylogenetics plays important roles in revealing a<br />basic knowledge on pattern of relationships to which<br />genetic resources can be improved. Over the past decade,<br />botanists have done several thousand phylogenetic analyses<br />based on molecular data of economically and horticulturally<br />important crops. Orchids are the best example for this.<br />There is no doubt that most orchid plants had played roles in<br />horticulture and hybridization. At present, many infrageneric<br />and intergeneric hybrids are available commercially. Successful<br />hybridization can be achieved if two or more individual<br />plants understudy are closely related in respect to their<br />genetics and evolution.</p>


2021 ◽  
Vol 69 (3) ◽  
Author(s):  
Hernán Darío Suárez ◽  
Camila Robayo ◽  
Xavier Marquínez ◽  
Lauren Raz

Introducction: Gaiadendron punctatum is a hemiparasitic species of Loranthaceae (Tribe Gaiadendreae) that is widely distributed in mountainous regions of Central and South America. Embryological and phylogenetic studies in the family indicate a trend towards reduction of the gynoecium and ovules, the morphology of which supports the current circumscription of Tribe Gaiadendreae (Gaiadendron and Atkinsonia). Molecular phylogenetic studies suggest that Nuytsia, Atkinsonia and Gaiadendron diverged successively, forming a grade at the base of the Loranthaceae, but support values are low. Objetive: In the present study, the floral anatomy of Gaiadendron punctatum was investigated in order to provide additional data to permit comparisons among the three basal-most genera in the Loranthaceae and reevaluate their relationships. Methods: Flowers of G. punctatum were collected at different developmental stages and serial sections were prepared and analyzed by light microscopy. Results: Inflorescence development is acropetal; the flowers are bisexual with an inferior ovary surmounted by a calyculus, a ring-shaped structure lacking vascular tissue; the ovary is comprised of seven basal locules, each with an ategmic, tenuinucellate ovule. Above the locules is a mamelon that is fused with the adjacent tissues. The androecium is comprised of seven epipetalous stamens, the anthers with fibrous endothecium dehiscence through a single longitudinal slit, releasing tricolpated pollen. Conclusions: The results of this study show that Gaiadendron and Atkinsonia share versatile, dorsifixed anthers, while Gaiadendron and Nuytsia share the same mode of anther dehiscence. On the other hand, Gaiadendron shares with members of Tribe Elytrantheae an amyliferous mamelon and an unvascularized calyculus. Combined phylogenetic analyses of morphological and molecular data are desirable to determine whether Tribe Gaiadendreae comprises a clade, a grade or if the two genera are more distantly related.


Sign in / Sign up

Export Citation Format

Share Document