scholarly journals Epidemic poliomyelitis, post-poliomyelitis sequelae and the eradication program

2020 ◽  
Vol 41 (4) ◽  
pp. 196
Author(s):  
Margaret M Peel

Epidemics of paralytic poliomyelitis (polio) first emerged in the late 19th and early 20th centuries in the United States and the Scandinavian countries. They continued through the first half of the 20th century becoming global. A major epidemic occurred in Australia in 1951 but significant outbreaks were reported from the late 1930s to 1954. The poliovirus is an enterovirus that is usually transmitted by the faecal–oral route but only one in about 150 infections results in paralysis when the central nervous system is invaded. The Salk inactivated polio vaccine (IPV) became available in Australia in 1956 and the Sabin live attenuated oral polio vaccine (OPV) was introduced in 1966. After decades of stability, many survivors of the earlier epidemics experience late-onset sequelae including post-polio syndrome. The World Health Organization launched the global polio eradication initiative (GPEI) in 1988 based on the easily administered OPV. The GPEI has resulted in a dramatic decrease in cases of wild polio so that only Pakistan and Afghanistan report such cases in 2020. However, a major challenge to eradication is the reversion of OPV to neurovirulent mutants resulting in circulating vaccine-derived poliovirus (cVDPV). A novel, genetically stabilised OPV has been developed recently to stop the emergence and spread of cVDPV and OPV is being replaced by IPV in immunisation programs worldwide. Eradication of poliomyelitis is near to achievement and the expectation is that poliomyelitis will join smallpox as dreaded epidemic diseases of the past that will be consigned to history.

2020 ◽  
Vol 41 (4) ◽  
pp. 223
Author(s):  
Margaret M Peel

Epidemics of paralytic poliomyelitis (polio) first emerged in the late 19th and early 20th centuries in the United States and the Scandinavian countries. They continued through the first half of the 20th century becoming global. A major epidemic occurred in Australia in 1951 but significant outbreaks were reported from the late 1930s to 1954. The poliovirus is an enterovirus that is usually transmitted by the faecal–oral route but only one in about 150 infections results in paralysis when the central nervous system is invaded. The Salk inactivated polio vaccine (IPV) became available in Australia in 1956 and the Sabin live attenuated oral polio vaccine (OPV) was introduced in 1966. After decades of stability, many survivors of the earlier epidemics experience late-onset sequelae including post-polio syndrome. The World Health Organization launched the global polio eradication initiative (GPEI) in 1988 based on the easily administered OPV. The GPEI has resulted in a dramatic decrease in cases of wild polio so that only Pakistan and Afghanistan report such cases in 2020. However, a major challenge to eradication is the reversion of OPV to neurovirulent mutants resulting in circulating vaccine-derived poliovirus (cVDPV). A novel, genetically stabilised OPV has been developed recently to stop the emergence and spread of cVDPV and OPV is being replaced by IPV in immunisation programs worldwide. Eradication of poliomyelitis is near to achievement and the expectation is that poliomyelitis will join smallpox as dreaded epidemic diseases of the past that will be consigned to history.


2012 ◽  
Vol 93 (3) ◽  
pp. 457-474 ◽  
Author(s):  
Philip D. Minor

Poliovirus causes paralytic poliomyelitis, an ancient disease of humans that became a major public-health issue in the 20th century. The primary site of infection is the gut, where virus replication is entirely harmless; the two very effective vaccines developed in the 1950s (oral polio vaccine, or OPV, and inactivated polio vaccine, or IPV) induce humoral immunity, which prevents viraemic spread and disease. The success of vaccination in middle-income and developing countries encouraged the World Health Organization to commit itself to an eradication programme, which has made great advances. The features of the infection, including its largely silent nature and the ability of the live vaccine (OPV) to evolve and change in vaccine recipients and their contacts, make eradication particularly challenging. Understanding the pathogenesis and virology of the infection is of major significance as the programme reaches its conclusion.


2014 ◽  
Vol 2 (2) ◽  
Author(s):  
Jayakrishnan Thayyil ◽  
Thejus Jayakrishnan

In 1988, the World Health Organization (WHO) resolved to eradicate poliomyelitis globally. Since then, the initiative has reported dramatic progress in decreasing the incidence of poliomyelitis and limiting the geographical extent of transmission. 2013 is recorded as the second consecutive year not reporting wild poliovirus (WPV) from India. If the country can retain this position for one more year India will be declared as polio eradicated. What should be the future vaccination strategies? We searched and reviewed the full text of the available published literature on polio eradication via PubMed and examined Internet sources and websites of major international health agencies. The oral polio vaccine (OPV) has been the main tool in the polio eradication program. Once WPV transmission is interrupted, the poliomyelitis will be caused only by OPV. India could expect 1 vaccine-associated paralytic polio per 4.2-4.6 million doses of OPV. Considering the threat of vaccine-derived viruses to polio eradication, WHO urged to develop a strategy to safely discontinue OPV after certification. The ultimate aim is to stop OPV safely and effectively, and eventually substitute with inactivated polio vaccine (IPV). The argument against the use of IPV is its cost. From India, field based data were available on the efficacy of IPV, which was better than OPV. IPV given intradermally resulted in seroconversion rates similar to full-dose intramuscular vaccine. The incremental cost of adopting IPV to replace OPV is relatively low, about US $1 per child per year, and most countries should be able to afford this additional cost.


2021 ◽  
Vol 308 ◽  
pp. 02018
Author(s):  
Yushuo Chen ◽  
Tianrui Yue ◽  
Zixiao Zhang

Poliomyelitis is an exclusively human disease that mainly affects children. Clinical features of poliomyelitis can be varied, from mild illness to the most severe paralysis, and the factor why poliomyelitis has different performances in individuals has been proved strongly correlated with membrane protein CD155. The nervous system shows a special protecting phenomenon against the invasion of poliovirus, and the mechanism is not very clear at present. Vaccines are the main means of preventing and controlling polio, and many different vaccines have been invented in the process of fighting polio. Inactivated polio vaccine (IPV) and oral polio vaccine (OPV) are the two main vaccines. IPV is known for its safety while OPV is widely used in developing countries because of its relatively low cost. This usage also leads to some side effects: vaccine-associated paralytic polio (VAPP) and vaccine-derived poliovirus (VDPV). Now, for polio eradication, the elimination of these two diseases has become particularly important. Thus, a new type of vaccine was created: sequential IPV-OPV with the safety of IPV and the low cost of OPV. This paper will talk about the different polio vaccines and their effects. An enormous difference between people who have gotten the vaccine and people who have not got the vaccine. Comparing the two kinds of people, people who get normal poliovirus, and people who get poliovirus after taking a vaccine, known as VAPP (vaccine-associated paralytic poliomyelitis), the former cannot get full recovery whole life and the latter has a very low possibility. In conclusion, people should take vaccines if it is affordable for them.


2021 ◽  
Vol Special Issue (2) ◽  
pp. 102-111
Author(s):  
Marcellin Mengouo Nimpa ◽  
Noëline Ravelomanana Razafiarivao ◽  
Annick Robinson ◽  
Mamy Randriatsarafara Fidiniaina ◽  
Richter Razafindratsimandresy ◽  
...  

Background: In 1988, the World Health Assembly launched the Global Polio Eradication Initiative. WHO AFRO is close to achieve this goal with the last wild poliovirus detected in 2014 in Borno States in Nigeria. The certification of the WHO African Region requires that all the 47 member states meet the critical indicators for a polio free status. Madagascar started implementing polio eradication activities in 1996 and was declared polio free in June 2018 in Abuja. This study describes the progress achieved towards polio eradication activities in Madagascar from 1977- 2017 and highlights the remaining challenges to be addressed. Methods: Data were collected from the national routine immunization services, Country Acute Flaccid surveillance databases and national reports of SIAS and Mop Up campaign. Country complete polio and immunization related documentation provided detailed historical information’s. Results: From 1997 to 2017, Madagascar reported one wild poliovirus (WPV) outbreak and four circulating Vaccine Derived Polio Virus (cVDPV) oubreaks with a total of 21 polioviruses (1 WPV and 21 cVDPV). The last WPV and cVDPV were notified in 1997 in Antananarivo and 2015 in Sakaraha health districts respectively. Madagascar met the main polio surveillance indicators over the last ten years and made significant progress following the last cVDPV2 outbreak in 2014 -2015. In addition, the country successfully implemented the switch from trivalent Oral Polio Vaccine (tOPV) to bivalent Oral Polio vaccine (bOPV) and containment activities. Environmental Surveillance established since 2015 did not reveal any poliovirus. The administrative coverage of the 3rd dose of oral polio vaccine (OPV3) varied across the years from 55% in 1991 to a maximum of 95% in 2007 before a progressive decrease to 86% in 2017. The percentage of AFP cases with more than 3 doses of oral polio vaccines increased from 56% in 2014 to 88% in 2017. A total of 19 supplementary immunization activities (SIA) were conducted in Madagascar from 1997 to 2017, among which 3 were subnational immunization days (sNID) and 16 were national immunization days (NIDs). Poor routine coverage contributed to the occurrence of cVDPC outbreaks in the country; addressing this should remain a key priority for the country to maintain the polio free status. From 2015 to June 2017, Madagascar achieved the required criteria leading to the acceptance of the country’s polio-free documentation in June 2018 by ARCC. However, continuous efforts will be needed to maintain a highly sensitive polio surveillance system with emphasis on security compromised areas. Finally strengthening the health system and governance at all levels will be necessary if these achievements are to be sustained. Conclusions: High national political commitment and support of the Global Polio Eradication Partnership were critical for Madagascar to achieve polio free status. Socio-political instability, weakness of the health system, sub-optimal routine immunization performance, insufficient SIA quality and existing security compromised areas remain critical program challenges to address in order to maintaining the polio free status. Continuous high-level advocacy should be kept in order to ensure that new government authorities maintain polio eradication among the top priorities of the country.


2017 ◽  
Vol 102 (4) ◽  
pp. 362-365 ◽  
Author(s):  
Julie Garon ◽  
Manish Patel

The decades long effort to eradicate polio is nearing the final stages and oral polio vaccine (OPV) is much to thank for this success. As cases of wild poliovirus continue to dwindle, cases of paralysis associated with OPV itself have become a concern. As type-2 poliovirus (one of three) has been certified eradicated and a large proportion of OPV-related paralysis is caused by the type-2 component of OPV, the World Health Assembly endorsed the phased withdrawal of OPV and the introduction of inactivated polio vaccine (IPV) into routine immunisation schedules as a crucial step in the polio endgame plan. The rapid pace of IPV scale-up and uptake required adequate supply, planning, advocacy, training and operational readiness. Similarly, the synchronised switch from trivalent OPV (all three types) to bivalent OPV (types 1 and 3) involved an unprecedented level of global coordination and country commitment. The important shift in vaccination policy seen through global IPV introduction and OPV withdrawal represents an historical milestone reached in the polio eradication effort.


2000 ◽  
Vol 6 (4) ◽  
pp. 644-651
Author(s):  
M. K. Khalil ◽  
Y. Y. Al Mazrou ◽  
Y. S. Al Ghamdi

Vaccines produced in accordance with WHO formulas, differ in concentration from those used in United States according to FDA formulas. We aimed to compare the immunogenicity of both formulas. Infants who were 6 weeks old were randomly put into 3 groups to receive 3 doses of vaccines at 6 weeks, 3 months and 5 months of age. The vaccines consisted of Haemophilus influenzae type b vaccine, diphtheria-tetanus-pertussis and oral polio vaccine. Antibody levels for polyribosylribitol phosphate [PRP], tetanus, diphtheria and poliovirus were measured 1 month after the third dose of vaccines. Although diphtheria and tetanus antigens in the FDA formula are half the concentration of the WHO formula, anti-tetanus and anti-diphtheria antibodies were significantly higher. No difference was found between groups regarding oral poliovirus vaccine


2021 ◽  
Vol 5 ◽  
pp. 94
Author(s):  
Megan Auzenbergs ◽  
Holly Fountain ◽  
Grace Macklin ◽  
Hil Lyons ◽  
Kathleen M O'Reilly

Background: Circulating vaccine derived poliovirus (cVDPV) outbreaks remain a threat to polio eradication. To reduce cases of polio from cVDPV of serotype 2, the serotype 2 component of the vaccine has been removed from the global vaccine supply, but outbreaks of cVDPV2 have continued. The objective of this work is to understand the factors associated with later detection in order to improve detection of these unwanted events. Methods: The number of nucleotide differences between each cVDPV outbreak and the oral polio vaccine (OPV) strain was used to approximate the time from emergence to detection. Only independent emergences were included in the analysis. Variables such as serotype, surveillance quality, and World Health Organization (WHO) region were tested in a negative binomial regression model to ascertain whether these variables were associated with higher nucleotide differences upon detection. Results: In total, 74 outbreaks were analysed from 24 countries between 2004 and 2019. For serotype 1 (n=10), the median time from seeding until outbreak detection was 284 (95% uncertainty interval (UI) 284-2008) days, for serotype 2 (n=59), 276 (95% UI 172-765) days, and for serotype 3 (n=5), 472 (95% UI 392-603) days. Significant improvement in the time to detection was found with increasing surveillance of non-polio acute flaccid paralysis (AFP) and adequate stool collection. Conclusions: cVDPVs remain a risk globally; all WHO regions have reported at least one VDPV outbreak since the first outbreak in 2001. Maintaining surveillance for poliomyelitis after local elimination is essential to quickly respond to both emergence of VDPVs and potential importations. Considerable variation in the time between emergence and detection of VDPVs were apparent, and other than surveillance quality and inclusion of environmental surveillance, the reasons for this remain unclear.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi91-vi91
Author(s):  
Carol Kruchko ◽  
Nirav Patil ◽  
Gino Cioffi ◽  
Daniel Brat ◽  
Janet Bruner ◽  
...  

Abstract BACKGROUND The Central Brain Tumor Registry of the United States (CBTRUS) uses a histology grouping scheme modeled after the World Health Organization (WHO) Classification of Tumours of the Central Nervous System (CNS) to classify cancer registry records for clinically relevant statistical reporting. Molecular studies have identified genetic features which precisely stratify tumor types, resulting in the 2016 update to the WHO Classification incorporating these markers. To continue providing clinically relevant statistics, the histology groupings have been aligned with the 2016 update. Resulting changes to groupings were assessed. METHODS In collaboration with four consulting neuropathologists the scheme was reviewed and realigned to the 2016 update. Obsolete histology nomenclature and ICD-O-3 codes were identified. Evaluation of the frequency of affected codes in the 2013-2017 data was conducted. RESULTS 417,767 total cases of primary brain and CNS tumors were diagnosed during 2013-2017 in the US. After review of the CBTRUS grouping scheme, 67 codes were noted to be obsolete, 51 codes were re-classified and 12 new codes were incorporated. This reorganization could result in grouping assignment or reporting changes for 2,588 cases (0.6%). The histology groups most significantly affected were mesenchymal tumors and neuronal and mixed neuronal glial tumors. CONCLUSIONS The 2016 revision to WHO Classification has affected collection and reporting of CNS tumors. The CBTRUS data edits program is now undergoing revision, which will become the basis of reporting. Some histology-specific molecular markers require additional data to distinguish between cases. In collaboration with CBTRUS, the NAACCR SSDI Committee developed a new variable for collection of molecular information. This variable was included in Uniform Data Standards beginning on January 1, 2018 and will be available for reporting in 2021. A 2021 update to the WHO Classification is scheduled for release later this year, requiring further classification updates.


2016 ◽  
Author(s):  
Michael Famulare ◽  
Christian Selinger ◽  
Kevin A. McCarthy ◽  
Philip A. Eckhoff ◽  
Guillaume Chabot-Couture

AbstractThe oral polio vaccine (OPV) contains live-attenuated polioviruses that induce immunity by causing low virulence infections in vaccine recipients and their close contacts. Widespread immunization with OPV has reduced the annual global burden of paralytic poliomyelitis by a factor of ten thousand or more and has driven wild poliovirus (WPV) to the brink of eradication. However, in instances that have so far been rare, OPV can paralyze vaccine recipients and generate vaccine-derived polio outbreaks. To complete polio eradication, OPV use should eventually cease, but doing so will leave a growing population fully susceptible to infection. If poliovirus is reintroduced after OPV cessation, under what conditions will OPV vaccination be required to interrupt transmission? Can conditions exist where OPV and WPV reintroduction present similar risks of transmission? To answer these questions, we built a multiscale mathematical model of infection and transmission calibrated to data from clinical trials and field epidemiology studies. At the within-host level, the model describes the effects of vaccination and waning immunity on shedding and oral susceptibility to infection. At the between-host level, the model emulates the interaction of shedding and oral susceptibility with sanitation and person-to-person contact patterns to determine the transmission rate in communities. Our results show that inactivated polio vaccine is sufficient to prevent outbreaks in low transmission rate settings, and that OPV can be reintroduced and withdrawn as needed in moderate transmission rate settings. However, in high transmission rate settings, the conditions that support vaccine-derived outbreaks have only been rare because population immunity has been high. Absent population immunity, the Sabin strains from OPV will be nearly as capable of causing outbreaks as WPV. If post-cessation outbreak responses are followed by new vaccine-derived outbreaks, strategies to restore population immunity will be required to ensure the stability of polio eradication.Author SummaryOral polio vaccine (OPV) has played an essential role in the elimination of wild poliovirus (WPV). OPV contains attenuated yet transmissible viruses that can spread from person-to-person. When OPV transmission persists uninterrupted, vaccine-derived outbreaks occur. After OPV is no longer used in routine immunization, as with the cessation of type 2 OPV in 2016, population immunity will decline. A key question is how this affects the potential of OPV viruses to spread within and across communities. To address this, we examined the roles of immunity, sanitation, and social contact in limiting OPV transmission. Our results derive from an extensive review and synthesis of vaccine trial data and community epidemiological studies. Shedding, oral susceptibility to infection, and transmission data are analyzed to systematically explain and model observations of WPV and OPV circulation. We show that in high transmission rate settings, falling population immunity after OPV cessation will lead to conditions where OPV and WPV are similarly capable of causing outbreaks, and that this conclusion is compatible with the known safety of OPV prior to global cessation. Novel strategies will be required to ensure the stability of polio eradication for all time.


Sign in / Sign up

Export Citation Format

Share Document