Primary Productivity of a Hypersaline Antarctic Lake

1978 ◽  
Vol 29 (6) ◽  
pp. 717 ◽  
Author(s):  
PJ Campbell

Although viable unicellular green algae are found in Deep Lake (a perenially ice-free hypersaline lake in Antarctica, 68� 34'S., 78� 11'E.), attempts made throughout a year to detect primary production using 14C failed. It is concluded that the rate of production in the limnetic zone does not exceed 0.15 mg C m-3 h-1. Only one positive measurement of carbon fixation was obtained: a sample collected near the bottom after the sediments had been disturbed gave a value of 0.18 mg C m-3 h-1. It was calculated that the upper limit of phytoplankton production was 3.3 g C m-1 year-1 and that total primary production could not exceed 10 g C m-2 year-1. Thus Deep Lake is one of the least productive lakes yet recorded. The combined effects of nutrient deficiency, hypersalinity, low temperatures and annual extremes in the availability of light in restricting the species diversity, population and productivity are stressed. One experiment in the nearby freshwater Watts Lake indicated a primary productivity in the limnetic zone ranging from 0.20 to 0.94 mg C m-3 h-1.


1984 ◽  
Vol 41 (4) ◽  
pp. 591-604 ◽  
Author(s):  
R. E. Hecky ◽  
S. J. Guildford

The primary productivity of seven regions of Southern Indian Lake and neighboring Wood Lake was measured during open-water seasons from 1974 to 1978. The lake had regional differences in chlorophyll concentrations and daily rates of integral primary production in 1974 and 1975 prior to impoundment of the lake. Regions receiving Churchill River flow tended to have higher chlorophyll concentrations and production rates than those regions marginal to the flow. Impoundment of the lake resulted in higher efficiencies of primary production in all regions, as indicated by higher light-saturated rates of carbon uptake per unit chlorophyll and by higher initial slopes of the hyperbolic light response relation of the phytoplankton. Many large basins of the lake had light penetration reduced by high concentrations of suspended sediment from eroding shorelines, while other areas had relatively unchanged light penetration. The increased efficiency of carbon fixation per unit chlorophyll resulted in higher rates of integral production in those regions where light penetration was not greatly affected. Daily rates of integral primary production in lake regions where light penetration had decreased markedly were not significantly different after impoundment because efficiencies of light utilization were higher. Comparison of the mean water column light intensities for those turbid regions with the values of Ik (light intensity at the onset of light saturation) for phytoplankton indicated that these turbid regions are now light deficient on average. Phosphorus deficiency, as indicated by alkaline phosphatase activity per unit ATP, which was present before impoundment, has been eliminated as the mean water column light intensity declined below 5 mEinsteins∙m−2∙min−1. The light environment of a new reservoir can be a significant determinant of integral production, and predicting the consequences of impoundment on phytoplankton production requires accurate prediction of the light environment.



1992 ◽  
Vol 338 (1285) ◽  
pp. 289-297 ◽  

In the Southern Ocean, inorganic macronutrients are very rarely depleted by phytoplankton growth. This has led to speculation on possible additional CO 2 drawdown in this region. However, the effects of climate change can only be predicted once the role of environmental and biotic factors limiting phytoplankton carbon fixation are understood. It is clear that the Southern Ocean is heterogeneous, and no single factor controls prim ary production overall. Ice cover and vertical mixing influence algal growth rates by m odulating radiance flux. Micronutrients, especially iron, may limit growth in some areas. Primary production is also suppressed by high removal rates of algal biomass. Grazing by zooplankton is the major factor determining magnitude and quality of vertical particle flux. Several of the physical controls on phytoplankton production are sensitive to climate change. Although it is impossible to make numerical predictions of future change on the basis of our present knowledge, qualitative assessments can be put forward on the basis of model predictions of climate change and known factors controlling prim ary production. Changes in water temperature and in windinduced mixing are likely to be slight and have little effect. Model predictions of changes in sea-ice cover vary widely, making prediction of biogeochemical effects impossible. Even if climatic change induces increased nutrient uptake, there are several reasons to suspect that carbon sequestration will be ineffective in comparison with continuing anthropogenic CO 2 emission.



Author(s):  
G. T. Boalch ◽  
D. S. Harbour ◽  
E. I. Butler

Over a period of 10 years, 1964–74, primary production has been measured at three stations across the western English Channel using the 14C method. Results for carbon fixation, cell counts and mean seasonal production are illustrated. Statistical analyses show that, at two of the three stations, carbon fixation in 1966 was significantly greater than expected and that annual production differs significantly at each of the stations. The variations observed are discussed in relation to other changes recorded in the area during the same period. A deck incubator used for simulated in situ14C experiments is illustrated.



2020 ◽  
Vol 117 (33) ◽  
pp. 20038-20043 ◽  
Author(s):  
Laureano A. Gherardi ◽  
Osvaldo E. Sala

Carbon allocated underground through belowground net primary production represents the main input to soil organic carbon. This is of significant importance, because soil organic carbon is the third-largest carbon stock after oceanic and geological pools. However, drivers and controls of belowground productivity and the fraction of total carbon fixation allocated belowground remain uncertain. Here we estimate global belowground net primary productivity as the difference between satellite-based total net primary productivity and field observations of aboveground net primary production and assess climatic controls among biomes. On average, belowground carbon productivity is estimated as 24.7 Pg y−1, accounting for 46% of total terrestrial carbon fixation. Across biomes, belowground productivity increases with mean annual precipitation, although the rate of increase diminishes with increasing precipitation. The fraction of total net productivity allocated belowground exceeds 50% in a large fraction of terrestrial ecosystems and decreases from arid to humid ecosystems. This work adds to our understanding of the belowground carbon productivity response to climate change and provides a comprehensive global quantification of root/belowground productivity that will aid the budgeting and modeling of the global carbon cycle.



Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3500
Author(s):  
Michael Sayers ◽  
Karl Bosse ◽  
Gary Fahnenstiel ◽  
Robert Shuchman

Large freshwater lakes provide immense value to the surrounding populations, yet there is limited understanding of how these lakes will respond to climate change and other factors. This study uses satellite remote sensing to estimate annual, lake-wide primary production in 11 of the world’s largest lakes from 2003–2018. These lakes include the five Laurentian Great Lakes, the three African Great Lakes, Lake Baikal, and Great Bear and Great Slave Lakes. Mean annual production in these lakes ranged from under 200 mgC/m2/day to over 1100 mgC/m2/day, and the lakes were placed into one of three distinct groups (oligotrophic, mesotrophic, or eutrophic) based on their level of production. The analysis revealed only three lakes with significant production trends over the study period, with increases in Great Bear Lake (24% increase over the study period) and Great Slave Lake (27%) and a decline in Lake Tanganyika (−16%). These changes appear to be related to climate change, including increasing temperatures and solar radiation and decreasing wind speeds. This study is the first to use consistent methodology to study primary production in the world’s largest lakes, allowing for these novel between-lake comparisons and assessment of inter-annual trends.



Author(s):  
Robert Hall ◽  
Jennifer Tank ◽  
Michelle Baker ◽  
Emma Rosi-Marshall ◽  
Michael Grace ◽  
...  

Primary production and respiration are core functions of river ecosystems that in part determine the carbon balance. Gross primary production (GPP) is the total rate of carbon fixation by autotrophs such as algae and higher plants and is equivalent to photosynthesis. Ecosystem respiration (ER) measures rate at which organic carbon is mineralized to CO2 by all organisms in an ecosystem. Together these fluxes can indicate the base of the food web to support animal production (Marcarelli et al. 2011), can predict the cycling of other elements (Hall and Tank 2003), and can link ecosystems to global carbon cycling (Cole et al. 2007).



1971 ◽  
Vol 28 (2) ◽  
pp. 189-201 ◽  
Author(s):  
D. W. Schindler ◽  
S. K. Holmgren

A modified 14C method is described for measuring phytoplankton production in low-carbonate waters. The procedure includes the use of the Arthur and Rigler (Limnol. Oceanogr. 12: 121–124, 1967) technique for determining filtration error, liquid scintillation counting for determining the radioactivity of membrane filters and stock 14C solutions, and gas chromatography for measuring total CO2.Primary production, chlorophyll a, and total CO2 were measured for two dates in midsummer from each of several lakes in the Experimental Lakes Area (ELA), ranging from 1 to 1000 ha in area and from 2 to 117 m in maximum depth. Phytoplankton species abundance and biomass were determined for the same dates. Production ranged from 0.02 to 2.12 gC/m3∙day and from 0.179 to 1.103 g C/m2∙day. Chlorophyll ranged from 0.4 to 44 mg/m3 and from 5 to 98 mg/m2 in the euphotic zone. The corresponding ranges for live phytoplankton biomass were 120–5400 mg/m3 and 2100–13,400 mg/m2. Chrysophyceae dominated the phytoplankton of most of the lakes.A system for classifying the lakes in terms of phytoplankton species composition and production–depth curves is developed.



Heart ◽  
2020 ◽  
Vol 106 (15) ◽  
pp. 1154-1159 ◽  
Author(s):  
Jia-Fu Wei ◽  
Fang-Yang Huang ◽  
Tian-Yuan Xiong ◽  
Qi Liu ◽  
Hong Chen ◽  
...  

ObjectiveWe sought to explore the prevalence and immediate clinical implications of acute myocardial injury in a cohort of patients with COVID-19 in a region of China where medical resources are less stressed than in Wuhan (the epicentre of the pandemic).MethodsWe prospectively assessed the medical records, laboratory results, chest CT images and use of medication in a cohort of patients presenting to two designated covid-19 treatment centres in Sichuan, China. Outcomes of interest included death, admission to an intensive care unit (ICU), need for mechanical ventilation, treatment with vasoactive agents and classification of disease severity. Acute myocardial injury was defined by a value of high-sensitivity troponin T (hs-TnT) greater than the normal upper limit.ResultsA total of 101 cases were enrolled from January to 10 March 2020 (average age 49 years, IQR 34–62 years). Acute myocardial injury was present in 15.8% of patients, nearly half of whom had a hs-TnT value fivefold greater than the normal upper limit. Patients with acute myocardial injury were older, with a higher prevalence of pre-existing cardiovascular disease and more likely to require ICU admission (62.5% vs 24.7%, p=0.003), mechanical ventilation (43.5% vs 4.7%, p<0.001) and treatment with vasoactive agents (31.2% vs 0%, p<0.001). Log hs-TnT was associated with disease severity (OR 6.63, 95% CI 2.24 to 19.65), and all of the three deaths occurred in patients with acute myocardial injury.ConclusionAcute myocardial injury is common in patients with COVID-19 and is associated with adverse prognosis.



2002 ◽  
Vol 1 (4) ◽  
pp. 295-304 ◽  
Author(s):  
Lynn J. Rothschild ◽  
Lorraine J. Giver

The discovery of subsurface communities has encouraged speculation that such communities might be present on planetary bodies exposed to harsh surface conditions, including the early Earth. While the astrobiology community has focused on the deep subsurface, near-subsurface environments are unique in that they provide some protection while allowing partial access to photosynthetically active radiation. Previously we identified near-surface microbial communities based on photosynthesis. Here we assess the productivity of such an ecosystem by measuring in situ carbon fixation rates in an intertidal marine beach through a diurnal cycle, and find them surprisingly productive. Gross fixation along a transect (99×1 m) perpendicular to the shore was highly variable and depended on factors such as moisture and mat type, with a mean of ~41 mg C fixed m−2 day−1. In contrast, an adjacent well-established cyanobacterial mat dominated by Lyngbya aestuarii was ~12 times as productive (~500 mg C fixed m−2 day−1). Measurements made of the Lyngbya mat at several times per year revealed a correlation between total hours of daylight and gross daily production. From these data, annual gross fixation was estimated for the Lyngbya mat and yielded a value of ~1.3×105 g m−2 yr−1. An analysis of pulse-chase data obtained in the study in conjunction with published literature on similar ecosystems suggests that subsurface interstitial mats may be an overlooked endogenous source of organic carbon, mostly in the form of excreted fixed carbon.



2015 ◽  
Vol 12 (24) ◽  
pp. 7467-7482 ◽  
Author(s):  
C. R. Löscher ◽  
M. A. Fischer ◽  
S. C. Neulinger ◽  
B. Fiedler ◽  
M. Philippi ◽  
...  

Abstract. The eastern tropical North Atlantic (ETNA) is characterized by a highly productive coastal upwelling system and a moderate oxygen minimum zone with lowest open-ocean oxygen (O2) concentrations of approximately 40 μmol kg−1. The recent discovery of re-occurring mesoscale eddies with close to anoxic O2 concentrations (< 1 μmol kg−1) located just below the mixed layer has challenged our understanding of O2 distribution and biogeochemical processes in this area. Here, we present the first microbial community study from a deoxygenated anticyclonic modewater eddy in the open waters of the ETNA. In the eddy, we observed significantly lower bacterial diversity compared to surrounding waters, along with a significant community shift. We detected enhanced primary productivity in the surface layer of the eddy indicated by elevated chlorophyll concentrations and carbon uptake rates of up to three times as high as in surrounding waters. Carbon uptake rates below the euphotic zone correlated to the presence of a specific high-light ecotype of Prochlorococcus, which is usually underrepresented in the ETNA. Our data indicate that high primary production in the eddy fuels export production and supports enhanced respiration in a specific microbial community at shallow depths, below the mixed-layer base. The transcription of the key functional marker gene for dentrification, nirS, further indicated a potential for nitrogen loss processes in O2-depleted core waters of the eddy. Dentrification is usually absent from the open ETNA waters. In light of future projected ocean deoxygenation, our results show that even distinct events of anoxia have the potential to alter microbial community structure with critical impacts on primary productivity and biogeochemical processes of oceanic water bodies.



Sign in / Sign up

Export Citation Format

Share Document