scholarly journals Marine invasive species: establishing pathways, their presence and potential threats in the Galapagos Marine Reserve

2016 ◽  
Vol 22 (4) ◽  
pp. 377 ◽  
Author(s):  
Inti Keith ◽  
Terence P. Dawson ◽  
Ken J. Collins ◽  
Marnie L. Campbell

Worldwide, marine biological invasions of non-native species have increased significantly in recent years due to a rapid rise in global trade, transport and tourism. Invasions occur when non-native species are transported from one region to another and establish, often resulting in competition displacing native species and changing ecosystems. Historic literature searches were conducted along with dive surveys of the main ports and in sites around the archipelago in order to produce a baseline of which non-native species are present in the Galapagos Marine Reserve at this time. Confounding processes of anthropogenic and natural activities are increasing the potential spread of marine invasive species in the Eastern Tropical Pacific and the Galapagos Marine Reserve. We discuss the potential vectors facilitating marine invasions with the suggestion that marine traffic could be the most influential vector in the transport of marine non-natives to the Galapagos Marine Reserve. The challenge for marine park authorities is to identify those species that are likely to cause negative impacts on native biodiversity and ecosystems before they establish in the Galapagos, and to develop pre-emptive strategies that would likely include prevention as well as risk-based management strategies to remove them or to mitigate their harmful effects.

Author(s):  
Jeanine Velez-Gavilán

Abstract Pteris multifida is a herbaceous fern native to temperate and tropical eastern Asia and naturalized on many continents as a result of being widely cultivated. Although it is an urban weed, it is not considered by most countries as an invasive or noxious weed. There is no information available on the species affecting native species or natural habitats. Although one source lists P. multifida as an invasive species in many countries outside of Africa due to it being easily dispersed by spores, there are no references or further information to support this statement. It is reported as an alien invasive species in Germany, but only as occurring in sheltered sites, growing on light-vents in cellars and walls. A species assessment for Florida, USA indicates, P. multifida is neither a weed of natural habitats nor of agriculture. The species has not been listed as an invasive plant in any state or natural areas of the USA. However, P. multifida has been assigned a Tier II Invasive Species status (defined as having moderate negative impacts on wildlife or natural communities in Louisiana), but of limited concern and/or extent in Louisiana. Pteris multifida is recorded in Cuba as potentially invasive being categorized as a species with a tendency to proliferate in some areas and capable of producing vast amounts of diaspores with high dispersal potential. No further details are given about potential invasiveness.


2018 ◽  
Author(s):  
Andreu Blanco Cartagena ◽  
Jesús Sousa Troncoso ◽  
Celia Olabarria ◽  
Marco Filipe Loureiro Lemos

Negative impacts of marine invasions include loss of genetic diversity, ecosystem functions/processes, and/or community structure and, consequently, a threat to global biodiversity through biotic homogenization. Recent studies indicate that invasive macroalgae make up a significant proportion of marine invasive species. Marine Protected Areas (MPAs) have been proved to have positive effects on marine biodiversity conservation; however, their role in preventing biological invasions, especially macroalgae, is still poorly understood. In this context, we studied the effects of protection and wave exposure on the abundance of six invasive macroalgae (Grateloupia turuturu, Asparagopsis armata, Colpomenia peregrina, Sargassum muticum, Undaria pinnatifida, and Codium fragile ssp. fragile) at two MPAs of the western Iberian Peninsula, one located along the Spanish coast (Illas Atlánticas) and the other on the Portuguese coast (Berlangas). The results showed opposite effects of protection and wave-exposure at the two MPAs. Greater biomass of invasive macroalgae was found at semiexposed areas outside the reserve in the Spanish MPA, whereas in the Portuguese reserve, biomass (especially of A. armata) was significantly greater inside the reserve, mainly at semiexposed sites. These differences highlight the importance of understanding the functioning of reserves to apply proper conservation management policies in order to preserve the MPAs resilience.


Fire ◽  
2022 ◽  
Vol 5 (1) ◽  
pp. 7
Author(s):  
Leonel J. R. Nunes ◽  
Catarina I. R. Meireles ◽  
Carlos J. Pinto Gomes ◽  
Nuno M. C. Almeida Ribeiro

Invasive species are an environmental problem affecting worldwide ecosystems. In the case of Acacia dealbata Link., the negative impacts affect the productivity of the forests due to the competition established with native species while contributing to a significant increment in the available fuel load, increasing the risk of fire. In Portugal, chemical and mechanical methods are mostly used in the control of these species. However, the costs are often unsustainable in the medium term, being abandoned before completing the tasks, allowing the recovery of the invasive species. The establishment of value chains for the biomass resulting from these actions was pointed out by several authors as a solution for the sustainability of the control process, as it contributes to reducing costs. However, the problems in quantifying the biomass availability make it challenging to organize and optimize these actions. This work, which started from a dendrometrical analysis carried out in stands of A. dealbata, created a model to assess woody biomass availability. The model proved to be statistically significant for stands with trees younger than 20 years old. However, the amount of data collected and the configuration of the settlements analyzed do not allow extrapolation of the model presented to older settlements.


Author(s):  
Lauren M. Smith-Ramesh

Abstract Allelopathy, or the process by which plants influence the growth and performance of their neighbours through the release of chemicals, may play a key role in mediating the impacts of non-native invasive species on their neighbours. The Novel Weapons Hypothesis purports that non-native invasive species are in part successful because they produce harmful allelochemicals to which resident species are particularly susceptible because residents lack a shared evolutionary history with the invader. While allelopathic non-native invaders may reduce the growth and performance of neighbours through direct phytotoxicity, they may more often exert negative impacts through disruption of biotic interactions among resident species. Allelopathy by non-native plants may disrupt mutualisms between resident plants and microbes, plant-herbivore interactions or existing competitive and facilitative interactions among resident plants. For example, several non-native plants are known to disrupt the mutualism between resident plants and mycorrhizal fungi, reducing resident plant fitness to the benefit of the invader. Allelopathic non-natives may also disrupt interactions among resident plants and their herbivores when allelochemicals also influence herbivore behaviour or fitness. Alternatively, biotic interactions can also be protective for resident species, which may be less susceptible to the impacts of non-native species when their mutualisms are intact. As we advance our understanding of allelopathy and its role in mediating the impacts of invasive plant species, we may gain new insights by viewing invasions within a network context rather than focusing on pairwise interactions.


Koedoe ◽  
2004 ◽  
Vol 47 (1) ◽  
Author(s):  
T.B. Robinson ◽  
C.L. Griffiths ◽  
N. Kruger

On a global scale, species are constantly being moved from their areas of origin to new locales. Such range extensions can occur naturally, but are frequently aided (intentionally or non-intentionally) by humans (Mack et al. 2000). As a result, the marked world-wide increase in animal, plant, and microbial immigrations, has been found to roughly track the increase in human commerce (Mack et al. 2000). The principal vectors of human-mediated marine invasions are ballast water (Williams et al. 1988), mariculture (Minchin 1996), sediment held in ballast tanks (Carlton 1985), and ship hull fouling (Minchin 1996).


2021 ◽  
Vol 7 ◽  
Author(s):  
Sierra Ison ◽  
Theo Ison ◽  
Patricia Marti-Puig ◽  
Katherine Needham ◽  
Michael K. Tanner ◽  
...  

Seamounts provide oases of hard substrate in the deep sea that are frequently associated with locally enhanced biological productivity and diversity. There is now increasing recognition of their ecological and socio-economic importance. However, management strategies for these habitats are constrained not only by limited ecological understanding but by the general public’s understanding of the pressures facing these ecosystems. This study adds to the growing literature on willingness to pay for conservation of deep-sea ecosystems and species by undertaking a stated preference survey to assess tourist’s awareness of seamounts and their preferences for protection within the Galapagos Marine Reserve. Visitors’ perceptions of seamount biodiversity must be studied because tourists are key drivers of the Galapagos economy and account for 41% of the Marine Reserve budget. Our survey captured the attitudes, perceptions and willingness to pay of tourists for an increase in the entrance fee to the Galapagos Marine Reserve. Results showed tourists were willing to pay on average US$48.93 in addition to existing entrance fees. The results of this study support the willingness to develop a multiuse management plan for the Galapagos Marine Reserve, balancing conservation, local communities livelihoods and sustainable tourism. Our results evidence a willingness to support and fund conservation, which is of critical importance to both the Galapagos National Park and local non-governmental organizations heavily reliant for their work on entrance fees and donations respectively. Overall, the conclusion from this study is that, despite limited knowledge, visitors of the Galapagos Islands attach positive and significant values to the conservation of seamount biodiversity.


Author(s):  
Lauren M. Smith-Ramesh ◽  

Allelopathy, or the process by which plants influence the growth and performance of their neighbours through the release of chemicals, may play a key role in mediating the impacts of non-native invasive species on their neighbours. The Novel Weapons Hypothesis purports that non-native invasive species are in part successful because they produce harmful allelochemicals to which resident species are particularly susceptible because residents lack a shared evolutionary history with the invader. While allelopathic non-native invaders may reduce the growth and performance of neighbours through direct phytotoxicity, they may more often exert negative impacts through disruption of biotic interactions among resident species. Allelopathy by non-native plants may disrupt mutualisms between resident plants and microbes, plant-herbivore interactions or existing competitive and facilitative interactions among resident plants. For example, several non-native plants are known to disrupt the mutualism between resident plants and mycorrhizal fungi, reducing resident plant fitness to the benefit of the invader. Allelopathic non-natives may also disrupt interactions among resident plants and their herbivores when allelochemicals also influence herbivore behaviour or fitness. Alternatively, biotic interactions can also be protective for resident species, which may be less susceptible to the impacts of non-native species when their mutualisms are intact. As we advance our understanding of allelopathy and its role in mediating the impacts of invasive plant species, we may gain new insights by viewing invasions within a network context rather than focusing on pairwise interactions.


2019 ◽  
Vol 47 (2) ◽  
pp. 1543-1550
Author(s):  
Francesca S. E. Dawson Pell ◽  
Ben J. Hatchwell ◽  
Alba Ortega-Segalerva ◽  
Deborah A. Dawson ◽  
Gavin J. Horsburgh ◽  
...  

AbstractInvasive species can have wide-ranging negative impacts, and an understanding of the process and success of invasions can be vital to determine management strategies, mitigate impacts and predict range expansions of such species. Monk parakeets (Myiopsitta monachus) and ring-necked parakeets (Psittacula krameri) are both widespread invasive species, but there has been little research into the genetic and social structure of these two species despite the potential links with invasion success. The aim of this study was to isolate novel microsatellite loci from the monk parakeet and characterise them in both monk and ring-necked parakeets in order to facilitate future investigations into their behaviour and population ecology. Sex-typing markers were also tested in both species. Of the 20 microsatellite loci assessed in 24 unrelated monk parakeets, 16 successfully amplified and were polymorphic displaying between 2 and 14 alleles (mean = 8.06). Expected heterozygosity ranged from 0.43 to 0.93 and observed heterozygosity ranged from 0.23 to 0.96. Nine of the 20 loci also successfully amplified and were polymorphic in the ring-necked parakeet, displaying between 2 and 10 alleles. Suitable markers to sex both species and a Z-linked microsatellite locus were identified. A multiplex marker set was validated for monk parakeets. These novel microsatellite loci will facilitate fine and broad-scale population genetic analyses of these two widespread invasive species.


2014 ◽  
Vol 281 (1786) ◽  
pp. 20132621 ◽  
Author(s):  
Takashi Atobe ◽  
Yutaka Osada ◽  
Hayato Takeda ◽  
Misako Kuroe ◽  
Tadashi Miyashita

Habitat connectivity is considered to have an important role on the persistence of populations in the face of habitat fragmentation, in particular, for species with conservation concern. However, it can also impose indirect negative effects on native species through the spread of invasive species. Here, we investigated direct and indirect effects of habitat connectivity on populations of invasive bullfrogs and native wrinkled frogs and how these effects are modified by the presence of common carp, a resident shared predator, in a farm pond system in Japan. The distribution pattern analysis using a hierarchical Bayesian modelling indicated that bullfrogs had negative effects on wrinkled frogs, and that these negative effects were enhanced with increasing habitat connectivity owing to the metapopulation structure of bullfrogs. The analysis also suggested that common carp mitigated these impacts, presumably owing to a top-down trophic cascade through preferential predation on bullfrog tadpoles. These presumed interspecific interactions were supported by evidence from laboratory experiments, i.e. predation by carp was more intense on bullfrog tadpoles than on wrinkled frog tadpoles owing to the difference in refuge use. Our results indicate that metacommunity perspectives could provide useful insights for establishing effective management strategies of invasive species living in patchy habitats.


Sign in / Sign up

Export Citation Format

Share Document