Relation Between Acid Proteinase Activity and Redistribution of Nitrogen During Grain Development in Wheat

1976 ◽  
Vol 3 (6) ◽  
pp. 721 ◽  
Author(s):  
MJ Dalling ◽  
G Boland ◽  
JH Wilson

Accumulation of grain nitrogen was studied in the wheat cultivars Argentine IX and Insignia. The pattern of nitrogen removal from several tissues of each cultivar was compared with the pattern of acid proteinase activity. There was a highly significant relation between the rate of nitrogen loss from the tissues and the rate estimated from the enzyme activity measurements. This suggests an important role for acid proteinase enzymes in leaf senescence. Redistribution of nitrogen present in the plant at anthesis accounted for 78.5 and 80.6 % of the final grain nitrogen yield of Argentine IX and Insignia respectively.

2009 ◽  
Vol 59 (3) ◽  
pp. 573-582 ◽  
Author(s):  
Xiao-ming Li ◽  
Dong-bo Wang ◽  
Qi Yang ◽  
Wei Zheng ◽  
Jian-bin Cao ◽  
...  

It was occasionally found that a significant nitrogen loss in solution under neutral pH value in a sequencing batch reactor with a single-stage oxic process using synthetic wastewater, and then further studies were to verify the phenomenon of nitrogen loss and to investigate the pathway of nitrogen removal. The result showed that good performance of nitrogen removal was obtained in system. 0–7.28 mg L−1 ammonia, 0.08–0.38 mg L−1 nitrite and 0.94–2.12 mg L−1 nitrate were determined in effluent, respectively, when 29.85–35.65 mg L−1 ammonia was feeding as the sole nitrogen source in influent. Furthermore, a substantial nitrogen loss in solution (95% of nitrogen influent) coupled with a little gaseous nitrogen increase in off-gas (7% of nitrogen influent) was determined during a typical aerobic phase. In addition, about 322 mg nitrogen accumulation (84% of nitrogen influent) was detected in activated sludge. Based on nitrogen mass balance calculation, the unaccounted nitrogen fraction and the ratio of nitrogen accumulation in sludge/nitrogen loss in solution were 14.6 mg (3.7% of nitrogen influent) and 0.89, respectively. The facts indicated that the essential pathway of nitrogen loss in solution in this study was excess nitrogen accumulation in activated sludge.


2016 ◽  
Vol 74 (3) ◽  
pp. 655-662 ◽  
Author(s):  
Mei Pan ◽  
Jun Zhao ◽  
Shucong Zhen ◽  
Sheng Heng ◽  
Jie Wu

Excess nitrogen in urban river networks leading to eutrophication has become one of the most urgent environmental problems. Combinations of different aeration and biofilm techniques was designed to remove nitrogen from rivers. In laboratory water tank simulation experiments, we assessed the removal efficiency of nitrogen in both the overlying water and sediments by using the combination of the aeration and biofilm techniques, and then analyzed the transformation of nitrogen during the experiments. Aeration (especially sediment aeration) combined with the biofilms techniques was proved efficient in removing nitrogen from polluted rivers. Results indicated that the combination of sediment aeration and biofilms, with the highest nitrogen removal rate from the overlying water and sediments, was the most effective combined process, which especially inhibited the potential release of nitrogen from sediments by reducing the enzyme activity. It was found that the content of dissolved oxygen in water could be restored on the basis of the application of aeration techniques ahead, and the biofilm technique would be effective in purifying water in black-odor rivers.


1994 ◽  
Vol 30 (12) ◽  
pp. 297-306 ◽  
Author(s):  
Joseph Akunna ◽  
Claude Bizeau ◽  
René Moletta ◽  
Nicolas Bernet ◽  
Alain Héduit

Two laboratory upflow aerobic and anaerobic filters fed with synthetic wastewaters were used to study firstly the effects of aeration rate on the nitrification of anaerobically pre-treated effluents and secondly the effects of recycle-to-influent ratios on methane production rate, denitrification and nitrification performances of a combined aerobic and anaerobic wastewater treatment process. Nitrification of anaerobically pre-treated effluent was accompanied by aerobic post-treatment for residual COD removal. A comparison of nitrification performances using autotrophic medium and anaerobically pre-treated effluents (containing 1203 mg COD 1−1) with the same ammonia nitrogen concentration of about 300 mg NH4-N 1−1 showed that 3% of added ammonia nitrogen was assimilated by autotrophic nitrifiers during nitrification of the autotrophic medium while up to 30% was assimilated by both nitrifiers and heterotrophs during organic carbon removal and nitrification of anaerobically pre-treated effluent. Furthermore, it was suspected that significant nitrogen loss through denitrification occured in the aerobic filter especially at low aeration rates. In the study of the combined aerobic-anaerobic system, maximum ammonia nitrogen removal of 70% through denitrification was obtained at recycle-to-influent ratios of 4 and 5. COD removal efficiency in the anaerobic filter decreased from 77 to 60% for recycle-to-influent ratios of zero to 5. Overall COD removal efficiency of the entire system was constant at about 99% due to heterotrophic COD removal in the aerobic filter.


1983 ◽  
Vol 213 (2) ◽  
pp. 417-425 ◽  
Author(s):  
G E Morris ◽  
L P Head

A competition e.l.i.s.a. (enzyme-linked immunosorbent assay) is described that enables direct measurement of the muscle-specific polypeptide of chick creatine kinase (M-CK) in extracts of differentiating muscle-cell cultures and in blood plasma samples, even in the presence of embryonic, or brain-type, creatine kinase. The characteristics of the assay can be considerably improved by the use of a monoclonal antibody, CK-ART, instead of rabbit antisera, and we offer an explanation for this in terms of heterogeneity of antibody affinities in polyclonal antisera. In addition to native enzyme, the assay will measure creatine kinase unfolded and inactivated by 8 M-urea treatment. During chick muscle differentiation in vitro, M-CK increased from 7.5% of the total creatine kinase at 24h to 76.0% at 143h, in good agreement with isoenzyme separation data. As a percentage of the total cell protein, M-CK increased by 156-340-fold over the same period and constituted 0.38-0.56% of the total protein in late cultures. E.l.i.s.a. measurements on 17-20-day embryonic thigh-muscle extracts, which contain almost exclusively M-CK, agree well with enzyme activity and radioimmunoassay. M-CK constituted 0.7-1.6% of the total protein in 17-19-day embryonic thigh muscle. Plasma M-CK concentrations in normal 2-8-week-old chickens were found to be in the range 0.5-0.9 micrograms/ml. Plasma concentrations of 32-56 micrograms/ml were found in 8-week-old dystrophic chickens by both e.l.i.s.a. and enzyme-activity measurements. The results suggest that inactive or unfolded forms of M-CK do not normally exist, in any significant amounts, in cell and tissue extracts or in freshly prepared samples of plasma.


Sign in / Sign up

Export Citation Format

Share Document