Comparison Between Osmotic and Hydrostatic Water Flows in a Higher Plant Cell: Determination of Hydraulic Conductivities and Reflection Coefficients in Isolated Epidermis of Tradescantia virginiana

1982 ◽  
Vol 9 (4) ◽  
pp. 461 ◽  
Author(s):  
SD Tyerman ◽  
E Steudle

Hydraulic conductivity (Lp), volumetric elastic modulus (ε) and reflection coefficients (δ) have been determined for cells from isolated strips of the lower epidermis of leaves of Tradescantia virginiana using the pressure probe. Lp was (6.4 � 4.5) × 10-8 ms-1 Mpa-1 [(6.4 � 4.5) × 10-7 cm s-1 bar-1; mean � s.d., n = 15 cells] and was independent of the cell turgor pressure (P) and of osmotic pressure of the bathing medium. P in Johnson's solution (π° = 0.09 MPa) was 0.42-0.67 MPa (4.2-6.7 bar), which was somewhat larger than in the intact tissue. ε increased linearly with increasing P in the pressure range from zero to full turgor. Reflection coefficients of some non-electrolytes were determined by measuring the ΔP in response to a change in external osmotic pressure (Δπ°) after the addition of the solutes. The data were corrected for solute flow. For sucrose, mannitol, urea, acetamide, formamide, glycerol and ethylene glycol, δ was close to unity and the cells behaved like ideal osmometers. For the monohydroxyalcohols n-propanol ( δ = -0.58), isopropanol (δ = 0.26), ethanol (δ = 0.25) and methanol (δ = 0.15), rather low reflection coefficients were found which were even negative for some solutes and cells. Values of δ obtained from measuring the inital water (volume) flow were in agreement with those determined from the ΔP/Δπ° ratios. For the rapidly permeating substances, the changes in turgor after the addition of solute were transient and the equilibration of solutes between cell and medium could be measured using the probe. Although unstirred layers may affect the equilibration of solute it should, in principle, be possible to use the technique for the determination of permeability coefficients of membranes of higher plant cells.

1971 ◽  
Vol 26 (12) ◽  
pp. 1302-1311 ◽  
Author(s):  
E. Steudle ◽  
U. Zimmermann

A method is described for the simultaneous determination of rapid changes of the cell turgor pressure (hydrostatic pressure) in algal cells (cell size must be at least 3 mm in diameter), and of the net volume flow across the cell membrane arising after a change of the cell turgor pressure or of the osmotic pressure in the outside medium. On the basis of the equations of irreversible thermodynamics it is possible to calculate the hydraulic conductivity of the cell membrane from these measurements, as it is theoretically shown.The hydraulic conductivities of the marine alga Valonia utricularis determined in two independent ways (by osmotic and hydrostatic experiments) are equal. For exosmosis, Lpex (hydrostatic) and Lpex (osmotic) amounted to (9,6 ± 1,0) ·10-7 and (9,8 ± 1,9) · 10-7 respectively cm · sec-1 · atm-1, and for endomosis, Lpen (hydrostatic) was (9,4 ± 1,1) ·10-7 cm · sec-1 · atm-1.A polarity in the water movement across the cell membranes as discussed in the literature could not be found for Valonia utricularis.


1989 ◽  
Vol 16 (6) ◽  
pp. 517 ◽  
Author(s):  
SD Tyerman ◽  
P Oats ◽  
J Gibbs ◽  
M Dracup ◽  
H Greenway

Nicotiana tabacum plants were grown in solution culture with salinity treatments of 1, 100 and 200 mol m-3 [NaCl], in Hoagland solution. After several weeks, solute concentrations and osmotic pressure of cell sap from the roots were measured. Increases in cellular [Na+] and [Cl-] and a smaller reduction in [K+] accounted for the difference in sap osmotic pressure between the 200 mol m-3 and 1 mol m-3 treatments. Turgor pressure (P) of fully expanded cortex cells measured with the pressure probe were 0.48 MPa in 1 mol m-3, 0.24 MPa in 100 mol m-3, 0.20 MPa in 200 mol m-3, and these values agreed with those calculated by difference between internal and external osmotic pressure. Low values of volumetric elastic modulus (ε), ranging from 1.2 MPa to 3.0 MPa at P = 0.42 MPa were obtained, which accounted for long equilibration times to changes in water potential. There was no effect of high salinities on ε after accounting for the fact that ε was a function of P and neither was there an effect on hydraulic conductivity (Lp), which ranged between 1.9 × 10-8 and 24.1 × 10-8 m s-1 Mpa-1. At 200 mol m-3 [NaCl]o, and to a lesser degree at 100 mol m-3 [NaCl]o, root hairs became deformed to resemble spherical bladders (mean diameter = 88 �m) which displayed similar P and water relations to other epidermal cells and cortex cells. In other experiments the response to a sudden reduction in [NaCl], from 200 to 1 mol m-3 was studied. P of cortex cells first rapidly increased from about 0.15 MPa to 0.53 MPa and then slowly declined with a half time of about 35 min to a new steady state of 0.3 MPa. This level was maintained in intact roots for at least 48 h. The rate of the initial increase in P is limited by water flow into the cells while the slow decline is limited by solute efflux from the cells with water following osmotically. The efflux was mainly in response to reduced external osmotic pressure rather than [NaCl]o. Efflux of Na+, K+ and Cl- accounted for the decrease in internal osmotic pressure but it is possible that the membrane also became more permeable to sugars. With the exception of bladder hairs, the overall integrity of the cell membrane was maintained since Lp did not increase and P declined smoothly to the new level with no evidence of rupture and resealing of the membrane. It is argued that the loss of solutes after the step down in external osmotic pressure consists of turgor or volume regulation in which solute permeability increases steeply as turgor or volume goes above a threshold.


1970 ◽  
Vol 25 (5) ◽  
pp. 500-504 ◽  
Author(s):  
U. Zimmermann ◽  
E. Steudle

A zero flow method of rapidly determining reflection coefficients of giant algae cells is described.Changes of the osmotic pressure in the outside medium caused a net volume flow through the cell membranes and consequently changes of the hydrostatic pressure inside the cell. By continously measuring the hydrostatic pressure it was possible, to determine the concentration outside the cell at which no volume flow occurs.The reflection coefficients of some non-electrolyts were determined on the membrane of the mediterranean algae Valonia utricularis with an error of 3 - 4% and are discussed on the basis of the pore model.The hydrostatic pressure inside Valonia cells decreased exponentially with time, when they were put into a hypertonic aequous solution. If a linear dependence of the volume (water) flow on the hydrostatic and osmotic pressure differences is supposed, it will be possible to calculate the volume (water) flow.


Cells ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 180 ◽  
Author(s):  
Yangmin X. Kim ◽  
Burkhard Stumpf ◽  
Jwakyung Sung ◽  
Sang Joon Lee

Leaf dehydration decreases water potential and cell turgor pressure. Therefore, changes in cell turgor pressure may regulate water transport across plant cell membranes. Using a cell pressure probe, the hydraulic properties of parenchyma cells in the midrib of maize (Zea mays L.) leaves were measured (half time of water exchange in cells as a measure of hydraulic conductivity Lp). Using intact plants with root systems encased in a pressure chamber, the root systems were pressurized and the turgor pressure in leaf cells increased by increments up to 0.3 MPa. However, the increase in the cell turgor did not increase but stabilized values. Increased water potential in leaf cells seemed to have stabilizing effects on the probably due to enhanced water availability. When the cell turgor decreased by 0.1 MPa to 0.3 MPa with releasing the pressure in the pressure chamber, was temporarily increased to a large degree,a factor of up to 13 within 30 min.


1971 ◽  
Vol 26 (12) ◽  
pp. 1276-1282 ◽  
Author(s):  
E. Steudle ◽  
U. Zimmermann

The littoral alga Chaetomorpha linum is especially able to maintain a constant turgor pressure in the cell by regulating the internal osmotic pressure, if the salt content of the sea water changes. Experiments in artificial isotonic sea water with a constant sodium concentration, but variable potassium concentrations (from 1 to 50 mMol/1) prove, that the decrease or increase of the potassium concentration in the medium (CKa) is an essential cause for this regulation of the turgor pressure besides the change of the osmotic pressure of the medium, which was thought to be the predominant cause till now. In the examined concentration range the ratio CKa to CK1 (potassium concentration in the cell) depends linear on CKa in the steady state. At low values of CKa (< 10 mMol/1) the decrease in CK1 is compensated by a reversible sodium uptake only in part, and this leads to partly high changes in the cell turgor pressure, although the osmotic pressure of the medium remains constant. The results are discussed on the basis of carrier models.


Sign in / Sign up

Export Citation Format

Share Document